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Abstract 

The Australian National Electricity Market (“NEM”) currently suffers from several problems. 
Current market rules force all generators and loads in the same region to receive the same price, 
even in the presence of transmission constraints between locations in the same region. This mis-
pricing gives rise to distorted bidding behaviour, leading to inefficient dispatch, and distorted 
generator and load location decisions. At the same time, the inter-regional settlement residues 
(“IRSRs”) – the primary instrument in the NEM for hedging inter-regional trading risk – are not 
a “firm” instrument for hedging trading risk in the presence of network outages; loop-flow 
between regions; or the distorted bidding brought about by the mis-pricing mentioned above.  

Several solutions to these problems have been proposed, of which the most prominent is the 
CSC/CSP mechanism proposed by Charles River Associates. However, this approach does not 
completely solve the problems identified above. In particular, it is not always possible to design a 
CSP/CSC mechanism which solves the hedging problem – for certain types of constraints, such 
as outage constraints, it is not possible to design the CSP/CSC mechanism in such a way as to 
allow for firm inter-regional hedges without the system operator incurring a surplus or deficit. 

This paper sets out the theory of an alternative, known as the “constraint-based residues” 
approach. I demonstrate that the constraint-based residues approach can solve the problems of 
mis-pricing and hedging – of both intra-regional and inter-regional price risk, in the presence of 
both outages and loop-flow. The constraint-based residues approach is also a natural “evolution” 
or “extension” rather than a radical overhaul of the current market design, and involves no risk 
of accumulation of surpluses or deficits by the system operator. This paper provides a detailed 
worked example, using actual market data of how the constraint-based residues approach would 
solve the problem of mis-pricing and negative settlement residues arising from the Murray-
Tumut constraint in the Snowy region. This paper argues that the constraint-based residue 
approach offers promise as a medium or long-term solution to the mis-pricing and hedging 
problems in the NEM. 
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1. Introduction 

1. As is widely known, Australia’s National Electricity Market (“NEM”) uses a “regional” 
or “zonal” pricing approach. The price paid for the production or consumption of electricity is 
the same at all geographic locations in the same region, regardless of the number or location of 
transmission constraints in that region. 

2. It is now clearly established that this gives rise to two fundamental problems in the 
NEM: 

(a) First, there is the “mis-pricing” problem. Generators and scheduled loads are 
dispatched according to the (hypothetical) local price for their connection point, 
but are only paid the regional reference price. This mismatch (or 
“inconsistency”) between pricing and dispatch induces these generators or loads 
to bid in a way which does not reflect their underlying cost. These generators or 
loads can bid as low as $-1000/MWh or as high as $10,000/MWh, in an attempt 
to increase the amount for which they are dispatched, with little or no impact on 
the price they receive. This distorted bidding, in turn, leads to inefficient 
dispatch – more expensive generation is turned on while less expensive 
generation remains available to produce. 

In the longer run, the mis-pricing will affect generator and load location 
decisions – generators and loads will have too strong an incentive to locate or 
expand in regions which exacerbate transmission congestion and loads will have 
too little incentive to locate or expand in regions which alleviate congestion. 

(b) Second, there is the “hedging” problem. At present in the NEM, the 
merchandising surplus is divided up into streams known as inter-regional 
settlement residues (“IRSRs”), which are auctioned back to market participants 
as a tool for arbitrage of inter-regional differences in the prices of hedge 
contracts. But these inter-regional settlement residues are not fully effective at 
this task – that is, they do not allow for perfect arbitrage of inter-regional 
differences in hedge prices, and in some cases these inter-regional settlement 
residues may be negative. This problem of lack of firmness1 partly arises as a 
result of the “mis-pricing” problem above but it is not solely a result of mis-
pricing. In the event of loop-flows between regions the current IRSRs are not a 
firm hedging instrument, even in the absence of any intra-regional constraints. 

3. Solving the “mis-pricing” problem requires a move towards finer geographic 
differentiation of prices (at least for generators) in the NEM. This could be achieved through the 
dividing up of existing regions into smaller regions. If these regions are made small enough this 
would eliminate the mis-pricing problem. However, it would not solve the hedging problem. As 
long as there remain loops between regions (and the smaller the regions the more likely it is that 
there will be numerous loops) the inter-regional settlement residues will remain non-firm. 

4. Some commentators have argued for a move to financial transmission rights (“FTRs”) to 
solve the hedging problem. FTRs have a solid theoretical foundation and would, in principle, 
                                                      

1 In this paper, when discussing the “firmness” of a hedging instrument I will be referring to the ability to 
use that instrument to hedge a given transaction. The total quantity of transactions that can be hedged 
depends on the physical limits of the transmission network, as reflected in the right-hand side of the 
constraint equations. The “firmness” of an interconnector is sometimes also used to refer to the level and 
certainty surrounding these physical limits on the interconnector. For the purposes of this paper I will put 
this latter concept of firmness to one side. In this paper I will say that a hedging instrument is firm if it 
allows a perfect hedge up to the physical limits of the transmission network. 
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solve the hedging problems in the NEM. However, the introduction of FTRs would be a radical 
step in the NEM which is not yet being seriously considered. I will put this option to one side. 

5. This leaves us with two proposals for solving the mis-pricing and hedging problems in 
the NEM: 

(a) The CSP/CSC mechanism proposed by Charles River Associates. CRA describe 
this approach in a series of papers produced for the Ministerial Council on 
Energy2; and 

(b) The “constraint-based residues” approach set out in this document. 

6. The CSP/CSC mechanism and the constraint-based residues approach have elements in 
common. Both can be adopted in a “progressive” manner – that is, individual constraints could 
be selected for handling under either mechanism, and other constraints added as they emerge 
over time. Both approaches solve the mis-pricing problem (at least for those constraints which 
are included in either regime) – in fact both approaches solve the mis-pricing problem in exactly 
the same manner: through a system of explicit or implicit payments to generators. 

7. However, these approaches differ in their handling of the residues that arise. Under the 
CSP/CSC mechanism these residues are passed back to the existing market participants and to 
and from the existing inter-regional settlement residues.  

8. In contrast, the constraint-based residues approach creates new residue “funds” or 
“streams” – closely analogous to the existing inter-regional settlement residues – which are then 
auctioned, as at present. Under the constraint-based residues approach there could be many new 
residue funds available – one for each of the constraints which might bind which are covered by 
the constraint-based residues regime. 

9. CRA appear to claim that the CSP/CSC mechanism can be designed in way which 
makes the inter-regional settlement residues firm. In fact, it is not always possible to design the 
CSP/CSC mechanism so as to obtain a firm hedge while ensuring that the mechanism is 
“revenue neutral” overall – that is, without imposing a surplus or a deficit on the system 
operator. 

10. In addition, CRA do not (to my knowledge) make any claims about the ability of market 
participants to hedge their intra-regional trading risks under the CSP/CSC mechanism. I show 
that firm intra-regional hedging is possible under the CSP/CSC scheme but only if market 
participants have access to trade a large number of individual residue funds – more in fact than is 
required under the constraint-based residues approach. 

11. In contrast, in this paper I show that under the constraint-based residues approach, 
market participants can, by obtaining access to the constraint-based residue funds, perfectly 
hedge their inter-regional and intra-regional trading risk, in a natural way. 

11. In addition, I demonstrate below that the constraint-based residues funds will (under 
certain assumptions) always be positive and therefore can be auctioned as a stream of one-way 
payments, with no risk of negative residues and no deficit or surplus incurred by the system 
operator.. Finally, I show that constraint-based residues are a natural generalization of the 
existing arrangements in the NEM and can be introduced on a progressive, gradual basis with no 
disruption to existing inter-regional arbitrage arrangements. 

                                                      

2 See, particularly, CRA (2004a), CRA (2004b) and CRA (2005). 
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12. I conclude that the constraint-based residues approach offers the most promise for an 
evolutionary, yet effective, revenue neutral, solution to the mis-pricing and hedging problems that 
arise in the current NEM. 

13. This paper is divided into seven sections. The first section provides the intuition and 
motivation for the constraint-based residues approach using simple network models with only a 
few nodes and ignoring losses. The second section demonstrates how constraint-based residues 
would work to facilitate inter-regional arbitrage in the context of the NEM itself, using as an 
example the events on 1 December 2004. The third section introduces the theoretical framework 
with a number of key definitions and introduces the notion of intra-regional and inter-regional 
hedging in the NEM. The fourth section considers the status quo arrangements in the NEM and 
formalizes the mis-pricing and hedging problems. The fifth section defines the constraint-based 
residues concept and demonstrates how it solves the mis-pricing and hedging problems. The 
sixth section formally defines the CSP/CSC concept and considers the conditions under which 
the CSP/CSC approach solves the hedging problems. The seventh section concludes. 

 

2. Constraint-Based Residues: An Introduction 

14. In order to develop some intuition as to the problems with the existing arrangements in 
the NEM, and how these problems are addressed by constraint-based residues, let’s consider 
some simple network models. This section shows that under the current arrangements in the 
NEM, the existing inter-regional settlement residues are not a firm hedging instrument in the 
presence of loop-flows. I go on to demonstrate how access to constraint-based residues allows all 
generators to obtain a firm hedge. 

15. In these examples, we will ignore losses –both static intra-regional losses and dynamic 
inter-regional losses. As we will see later, this assumption is more than a mere convenience, but it 
greatly simplifies the presentation and therefore is useful at this stage. 

16. Let’s start first with a simple network without loop-flow. The following simple two-node 
network will show, first, how inter-regional settlement residues are used as a hedging device, in a 
network without intra-regional constraints or loop-flow. In the next examples we will see how 
inter-regional settlement residues are not effective at hedging in the presence of intra-regional 
constraints or loop-flow. 

17. In this network there are just two regions, labeled region A and region B. The regional 
reference price in each of these regions is ARRP  and BRRP . The flow on the line between these 
two regions is denoted BAF → . The physical limit on the flow on this line is denoted K. The inter-
regional settlement residues on the interconnector between the regions is equal to the price 
difference between the regions times the flow BAABBA FRRPRRPIRSR →→ −= )( . 

 

18. Now suppose that a trader wishes to perfectly hedge a transaction which involves 
purchasing a swap contract in region A and selling a swap contract in region B (a “swap contract” 
is the simplest form of hedging arrangement under which the buyer agrees to pay the seller the 
difference between the spot and a pre-determined price at a point in time in the future). In order 

A B

ARRP BRRP  KF BA ≤→  



 5 

to perfectly hedge this transaction the trader needs an instrument which has a pay-off equal to 
the price difference between the regions times a fixed quantity. 

19. Let’s suppose that the trader buys a 100 MW swap in region A and sells a 100 MW swap 
in region B. The trader then needs a hedge instrument which has the pay-off equal to 100 times 
the price difference – that is, )(100 AB RRPRRP −× . 

20. Suppose that this trader purchases a share equal to K100  of the inter-regional 
settlement residues. This has the pay-off equal to: 

K
F

RRPRRPIRSR
K

BA
ABBA

→
→ −=× )(100100

 

21. Now, in this simple network we know that the price difference between the two regions 
must be zero unless the flow on the interconnector is at its limit. So the pay-out on the inter-
regional settlement residue is equal to zero unless the flow is equal to the limit K. Mathematically, 
this implies that KRRPRRPIRSR ABBA )( −=→ . Therefore, the payout from purchasing this 

share K100  of the inter-regional settlement residues is just )(100 AB RRPRRP −× , as 
required. In other words, in this simple network with no loop flow and no intra-regional 
constraints, the inter-regional settlement residues allow for perfect arbitrage of the differences in 
hedge prices in each region.3 

22. Let’s now consider a slightly more complicated network with an intra-regional 
constraint. In the following network there are three nodes, with the first two nodes in region A 
and the third node in region B. There is an intra-regional constraint between nodes 1 and 2, but 
no constraint on the inter-regional interconnector between nodes 2 and 3. 

 

23. As before, we will ask whether the inter-regional settlement residues allow for the 
perfect arbitrage of swap prices across the two regions. The inter-regional settlement residues are, 
in this network, equal to BAABBA FRRPRRPIRSR →→ −= )( . In other words, the inter-regional 
settlement residues are equal to the price difference between node 3 and node 1 times the flow 
on the line between node 3 and node 2. 

24. The trader could still perfectly arbitrage 100 MW of swaps in each region, by purchasing 
the share BAF →100  of the inter-regional settlement residues. This yields a payout of precisely 

)(100 AB RRPRRP −× , as required. 

                                                      

3  As an aside, note that “perfect” arbitrage does not mean that the swap prices in each region have exactly 
the same price, rather that the difference in the swap prices is precisely equal to the forecast future average 
difference in the spot prices. 

1 2

ARRP BRRP  Constraint 

2121 →→ = KF  

3

BAF →  
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25. But there is a potential problem: In the previous example we saw that the flow on the 
interconnector was always equal to the physical limit at times of binding constraint (and therefore 
at times of large price differences). But in this network there is no necessary relationship between the flow 
on the interconnector and any of the network’s physical limits at times of a binding intra-regional 
constraint. 

26. This poses a problem for the trader who is seeking to arbitrage hedge prices. How does 
the trader know the flow on the line between node 2 and node 3 at times of binding intra-
regional constraint? The flow on the line between node 2 and node 3 could be positive, zero or 
even negative (giving rise to negative settlement residues) at times when the intra-regional 
constraint is binding. If the trader cannot perfectly forecast the flow on the interconnector at 
times of binding constraint the trader cannot obtain a perfect hedge – the trader is left bearing 
some risk. 

27. This problem is known as the “lack of firmness” issue. In the presence of intra-regional 
constraints, price differences between regions can arise whether or not the flow on the 
interconnector between regions is at its physical limit. Since traders cannot easily forecast the 
flow on the interconnector at times of binding intra-regional constraint, traders cannot obtain an 
instrument which allows for perfect hedge with no residual risk. 

28. This problem could be solved if traders had access to another source of residues. Let’s 
suppose that the trader has access to the “constraint-based residues” for the constraint on the 
line between node 1 and node 2. In this simple network the constraint-based residues for this 
constraint are equal to the price difference between node 1 and node 2 times the physical limit 
between node 1 and node 2. In other words, the constraint-based residues for the constraint 
between node 1 and node 2 are:  211221 )( →→ −= KPPCBR . 

29. Now, suppose the trader purchases a share 21100 →K  of these constraint-based 
residues. Since the price at node 1 is equal to the regional reference price for region A and since 
the price at node 2 is equal to the regional reference price for region B (assuming, as above, no 
binding constraints on the interconnector) we have demonstrated that this share of the 
constraint-based residue allows for perfect arbitrage: 

)(100)(100100
2112

21
21

21
AB RRPRRPKPP

K
CBR

K
−=−=× →

→
→

→

 

30. More generally, in the network above, the trader could buy the required share of the 
inter-regional settlement residues and the required share of the constraint-based residues and 
would have a perfect hedging instrument, whether there was a binding constraint on either line. 
We can conclude that allowing a trader access to the constraint-based residues improves the 
effectiveness of inter-regional arbitrage of hedge contracts. Constraint-based residues solve the 
problem of lack of firmness of the inter-regional settlement residues in the presence of intra-
regional constraints. 

31. Let’s now consider a network with loop flow. The following network has three nodes, 
joined by three interconnectors. The flow on the line from C to B is assumed to be at its limit. 
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32. As always in the NEM, the pricing outcomes which arise when a constraint is binding 
depend on the precise form of the constraint equation. In this case, the binding constraint 
equation might take the form: 

BCCACABABA KFF →→→→→ ≤+ ββ  

Where BA→β  and CA→β  are constants. 

33. The mathematics of constrained optimisation then tells us that the price differences 
between the various nodes in this simple network are equal to the “marginal value” of the 
binding constraint equation times the coefficient on the relevant interconnector in that constraint 
equation: 

BAAB RRPRRP →×=− βλ  and 

CAAC RRPRRP →×=− βλ  

34. If we assume that all three of these lines have identical electrical impedance, it turns out 
that the coefficient on the flow from A to B must be the negative of the flow from A to C 
( 0=+ →→ CABA βα ). This implies that the price at node A must be equal to the average of the 
price at node B and the price at node C. 

CBA RRPRRPRRP 2
1

2
1 +=  

35. This in turn implies, of course, that if the flow on the line from A to C is in the direction 
of node C, there will be negative settlement residues accumulating on the interconnector from A 
to C. This is, of course, the underlying reason why negative settlement residues accrue on the 
VIC-Snowy interconnector at times of binding Murray-Tumut constraint. 

36. Let’s ask whether the inter-regional settlement residues allow for the perfect arbitrage of 
swaps between any pair of regions. Let’s start with arbitrage between node A and node C. The 
inter-regional settlement residues are equal to  CAACCA FRRPRRPIRSR →→ −= )( . As before, a 
trader could perfectly arbitrage 100 MW of swaps between A and C, by purchasing the share 

CAF →100  of the inter-regional settlement residues. But, as before, how does the trader know 
the flow on the line between node A and node C at times of a binding constraint between nodes 
C and B? The flow on the line between node A and node C could be negative, zero or positive 
(giving rise to negative settlement residues) at times when the C-B constraint is binding. As 
before, the A-C inter-regional settlement residue is no longer a firm instrument for arbitraging 
swaps between A and C. 

A B
ARRP BRRP  

Constraint 

BCBC KF →→ =  

CAF →  

C

CRRP  

BAF →  
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37. The same is true for the inter-regional settlement residues between node A and node B. 
Again, these inter-regional settlement residues are not firm – that is, they do not allow for perfect 
arbitrage of swap prices between A and B. 

38. What about the inter-regional settlement residues between node C and B? In this case – 
and only this case – the inter-regional settlement residues are “firm”. The trader could perfectly 
arbitrage 100 MW of swaps between C and B by purchasing a share BCK →100  of the C-B 
inter-regional settlement residues.4 

39. As before, the problem of lack of firmness can be solved if traders had access to the 
constraint-based residues for the constraint on the line between node C and node B. Let’s define 
a new residue for this constraint equal to the “marginal value” of the binding C-B constraint 
times the physical limit between node 1 and node 2: BCBCBC KCBR →→→ = λ . 

40. Now, a trader who wishes to perfectly arbitrage 100 MW of swaps between A and B 
need only purchase the share BCBA K →→α100  of this constraint-based residue. The resulting 

payoff is: )(1001000
100

ABBABCBC
BC

BA RRPRRPCBR
K

−== →→→
→

→ βλ
β

 as required. 

41. Similarly, a trader who wishes to perfectly arbitrage 100 MW of swaps between A and C 
need only purchase the share BCCA K →→β100  of this constraint-based residue. The resulting 

payoff is: )(100100
100

ACCABCBC
BC

CA RRPRRPCBR
K

−== →→→
→

→ βλ
β

 as required. 

42. Finally, a trader who wishes to perfectly arbitrage 100 MW of swaps between C and B 
need only purchase the share BCCABA K →→→ − )(100 ββ  of this constraint-based residue. The 

resulting payoff is: BC
BC

CABA CBR
K →

→

→→ − )(100 ββ
 )(100 CABABC →→→ −= ββλ  

)(100 CB RRPRRP −= as required. 

43. In other words, whereas the inter-regional settlement residues are not firm and do not 
allow for perfect arbitrage of hedge prices in this simple network, the constraint-based residues 
are fully firm and allow for perfect arbitrage of swap prices across any pair of nodes. As before, 
allowing a trader access to the constraint-based residues improves the effectiveness of inter-
regional arbitrage of hedge contracts. Constraint-based residues solve the problem of lack of 
firmness of the inter-regional settlement residues in the presence of loop flow in the network. 

44. These examples have illustrated the constraint-based residues approach in the context of 
simple network models and ignoring losses. When losses are taken into account the problem is 
slightly more complex. The next section illustrates the use of constraint based residues for inter-
regional arbitrage in the context of the events in the NEM on 1 December 2004. 

 

                                                      

4 In this network there are defined to be three interconnectors. In the Snowy region there are only two 
interconnectors, neither of which is useful for obtaining perfect arbitrage. 
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3. Constraint-based residues: An illustration of their operation in the NEM 

45. This section demonstrates how constraint-based residues would be used to improve 
inter-regional arbitrage in the context of the NEM itself. 

46. In the examples above, we ignored losses. Now, as we move to apply these ideas to the 
NEM we can no longer simply ignore losses. The NEM models losses on interconnectors using 
dynamic inter-regional loss equations. Losses within each region are modeled using static 
marginal loss factors. The presence of losses on interconnectors implies that price differences can 
and regularly do arise between regions even in the absence of binding constraints. These price 
differences from losses give rise to inter-regional settlement residues in exactly the same manner 
as price differences from binding constraints give rise to settlement residues. As a consequence, 
the total merchandising surplus is larger than just the sum of all the constraint based residues. So, 
we need to define one more category of residues – those residues which arise due to losses 
between regions. 

47. In the theory sections below I define “inter-regional loss residues” for each 
interconnector. As we will see, to perfectly arbitrage inter-regional differences in the prices of 
hedge contracts between two adjacent regions, a trader needs access to two sources of residues – 
the inter-regional loss residues for the interconnector between those regions and the constraint-
based residues for each binding constraint affecting that interconnector. More precisely, to 
perfectly arbitrage inter-regional hedge prices, the trader needs to purchase both (a) a share of the 
inter-regional loss residues which is inversely proportional to the flow on the interconnector and 
(b) for each binding constraint, a share of the constraint-based residues equal to the coefficient of 
that interconnector in the binding constraint equation divided by that constraint equation’s “right 
hand side”. 

48. Precisely how this would work in the NEM can be illustrated using the events in the 
NEM of 1 December 2004. This was a relatively “busy” day in the market. In particular, on this 
day a binding constraint due to the network limitation between Murray and Tumut produced 
negative settlement residues on the VIC-Snowy interconnector, inducing NEMMCO to “clamp” 
the flows on the VIC-Snowy interconnector. 

49. Table 1 (at the end of this section) highlights the events that occurred during a couple of 
hours in the morning of this day – starting at the dispatch interval ending 9:25 am, through to the 
dispatch interval ending 11:15 am. 

50. As can be seen in Table 1, the prices in VIC, Snowy and NSW were initially similar, and 
around $100 (the differences in these prices are due entirely to losses on the interconnectors). 
Then, in the interval ending 9:35 am, the Murray-Tumut constraint limit (here, the H>>H-64_B 
constraint) started to bind. Immediately the price in Snowy dropped significantly, to close to $0, 
the price in VIC dropped to around $55 and the price in the NSW increased to $300. This 
resulted in substantial negative settlement residues on the VIC-Snowy interconnector. 

51. NEMMCO responded by clamping the VIC-Snowy interconnector – first with a 350 
MW flow limit (reflected in the VH_0350 constraint), dropping to 200 MW at 10:10 am and 
finally down to 100 MW at 10:30 am. By 10:35 am the Murray-Tumut constraint had been 
relieved and the Snowy price jumped up to $800, reflecting the NSW price (which by this time 
was at $930). 

52. In a network without losses (as in the examples in the previous section), a flow of 
residues can be used to perfectly arbitrage hedge prices if it has a pay-out equal to the price 
difference between two regions. This is no longer the case in a network with losses. In a network 
with losses, in order to sell 100 MW of electricity in the importing region, the trader must 
purchase more than 100 MW of electricity in the exporting region. In fact, if the quantity of 
electricity imported at the importing region regional reference node is F and the losses on the 
interconnector are L, (so that the quantity of electricity exported from the exporting region is 
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LF + ), the trader must purchase precisely )/1(100 FL+× MW in the exporting region to 
obtain 100 MW of electricity in the importing region. 

53. As a consequence, in order to perfectly arbitrage the hedge prices between two regions 
where all the losses are attributed to the exporting region, the trader must obtain a flow of 
residues with a pay-out not simply equal to the price difference between the two regions 

)( AB RRPRRP − , but equal to the price difference adjusted for losses: 
)/1( FLRRPRRP AB +×− . 

54. To make matters slightly more complicated, the NEM does not always attribute losses 
entirely to the exporting region. Instead, losses are shared between regions in fixed proportions 
in an amount given by the “loss share”. The loss share is a constant which specifies the share of 
the losses which are attributed to the exporting region. Therefore, in the NEM, in order to 
perfectly arbitrage the hedge prices between two regions, the trader must obtain a flow of 
residues with a pay-out equal to: 

)/_1()/)_1(1( FLsharelossRRPFLsharelossRRP AB ×−×−×−−×  

55. Let’s call this amount the “Adjusted Price Difference”. I demonstrate below how the 
various sources of residue can be combined to yield a pay-out precisely equal to the Adjusted 
Price Difference. 

56. Table 2 sets out the inter-regional settlement residues and the inter-regional loss-residues 
for the VIC-Snowy interconnector and all the constraint-based residues affecting the VIC-Snowy 
interconnector for the relevant time period on 1 December 2004. 

57. It is immediately apparent that the inter-regional settlement residues become large and 
negative as soon as the Murray-Tumut constraint binds and do not become positive again until 
this constraint is relieved at 10:30 am. In contrast, note that all of the inter-regional loss residues 
and the constraint-based residues are positive. These streams can therefore be auctioned in the 
usual NEMMCO process, with no need for intervention to prevent negative residues streams as 
at present.5 

58. We saw above that inter-regional settlement residues are a useful source of residues for 
perfectly arbitraging inter-regional hedge price differences, but only when the trader can perfectly 
forecast the flow on the interconnector. This remains true even though the inter-regional 
settlement residues are negative. As table 3 shows, provided the trader can perfectly forecast the 
flow on the interconnector at each point in time, a trader could use the inter-regional settlement 
residues (even though they are negative) to perfectly arbitrage inter-regional hedge price 
differences.  

59. Specifically, in table 3, the 4th column represents the share of the VIC-Snowy inter-
regional settlement residues that the hypothetical trader would need to purchase (which is, recall, 
inversely proportional to the flow on the interconnector). The 5th column, labeled “IRSR pay-
out” is the resulting pay-out each interval to a trader purchasing exactly this share. By comparing 
this 5th column with the 3rd column labeled “Adjusted Price Difference” we can see that, if we 
could purchase the correct share of the inter-regional settlement residues, the inter-regional 
settlement residues would allow for perfect inter-regional hedging. In fact, as Table 3 shows, the 
inter-regional settlement residues allow for perfect hedge even in the presence of NEMMCO 
clamping of the VIC-Snowy interconnector. 

                                                      

5  In this next section I set-out the conditions under which the inter-regional loss residues and the 
constraint-based residues are positive. 
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60. However, in practice it is likely to be extremely difficult for a trader to know the flow on 
the VIC-Snowy interconnector at every point in time, especially at those times when the Murray-
Tumut constraint is binding (whether or not NEMMCO intervenes through clamping). As a 
result, the trader is not likely to be able to forecast precisely how much of Vic-Snowy inter-
regional settlement residues to purchase. Instead the trader would be forced to forecast some 
“average” level which would leave it exposed to some risk. This is, of course, precisely the 
“firmness” issue discussed above. In any case, as we already noted, the inter-regional settlement 
residues throughout most of this period are negative. 

61. Let’s now explore hedging using inter-regional loss residues and constraint-based 
residues. Since there are four constraints which bind (and which affect the VIC-Snowy 
interconnector) during this period, there are four constraint-based residues. In order to obtain a 
flow of residues which is equal to the Adjusted Price Difference, the trader must purchase a 
share of the inter-regional loss residues which is inversely proportional to the flow (this is the 
share set out in the 6th column of table 3) and a share of each of the constraint-based residues 
equal to the coefficient in the constraint equation divided by the constraint right-hand side. In 
the case of each of the NEMMCO “clamp” constraints, the coefficient in the constraint equation 
is one, and the right-hand-side is simply a constant and equal to the clamped limit. In the case of 
the H>>H-64_B constraint, the coefficient in the constraint equation for the VIC-Snowy 
interconnector is -0.164. As we can see in table 1, the constraint right-hand-side for the H>>H-
64_B constraint is not perfectly constant but varies between 930 and 940. I will assume that the 
trader can perfectly forecast this constraint right-hand-side.6 As can be seen in table 3, when the 
trader forms the resulting portfolio of residues, the pay-out (the 11th column in table 3) is 
precisely equal to the Adjusted Price Difference. The conclusion is that the loss residues and the 
constraint-based residues (a) are positive; and (b) allow for perfect arbitrage of the inter-regional 
price differences.  

62. The examples in this section have focused on hedging the VIC-Snowy price differences. 
However exactly the same analysis applies to hedging the Snowy-NSW interconnector. 
Combining these two instruments would allow a trader to hedge across the entire Snowy region 
between VIC and NSW. 

 

                                                      

6 Even if the trader could not perfectly forecast this value, the risk the trader would have to bear simply by 
forecasting the average value is relatively small. 
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Table 1: Pricing and Constraint Outcomes 1 December 2004 9:25 am – 11:15 am 

Dispatch  RRP RRP RRP Flow H>>H-64_B VH_0350 VH_0200 VH_0100 
Interval Vic Snowy NSW VIC-Snowy MV RHS MV RHS MV RHS MV RHS

2004/12/01 09:25 $89.23 $95.90 $108.79 753.7 0 929.61 0 0 0 0 0 0
2004/12/01 09:30 $89.82 $96.10 $109.75 697.9 0 942.51 0 0 0 0 0 0
2004/12/01 09:35 $54.97 $0.04 $305.86 370.3 345.63 936.34 0 0 0 0 0 0
2004/12/01 09:40 $54.74 $0.04 $309.84 417.5 345.63 936.07 0 0 0 0 0 0
2004/12/01 09:45 $54.08 $0.04 $311.84 552.1 345.63 949.24 0 0 0 0 0 0
2004/12/01 09:50 $44.15 $0.04 $313.86 350.0 345.63 937.23 11.19 350 0 0 0 0
2004/12/01 09:55 $40.50 $0.04 $902.11 350.0 993.78 942.12 121.24 350 0 0 0 0
2004/12/01 10:00 $44.15 $0.04 $907.96 350.0 993.78 928.73 117.49 350 0 0 0 0
2004/12/01 10:05 $40.50 $0.04 $299.65 350.0 340.86 945.96 14.17 350 0 0 0 0
2004/12/01 10:10 $27.70 $0.04 $305.80 200.0 345.63 933.31 0 350 28.51 200 0 0
2004/12/01 10:15 $27.70 $0.04 $307.79 200.0 345.63 947.2 0 0 28.52 200 0 0
2004/12/01 10:20 $32.70 $0.04 $309.75 200.0 345.63 938.11 0 0 23.43 200 0 0
2004/12/01 10:25 $40.50 $0.04 $309.52 200.0 345.63 940.53 0 0 15.49 200 0 0
2004/12/01 10:30 $35.08 $280.00 $319.26 100.0 0 948.82 0 0 0 0 244.3 100
2004/12/01 10:35 $27.70 $805.00 $930.44 100.0 0 946.79 0 0 0 0 776.21 100
2004/12/01 10:40 $30.10 $805.00 $930.34 100.0 0 928.42 0 0 0 0 773.8 100
2004/12/01 10:45 $29.70 $805.00 $936.59 100.0 0 946 0 0 0 0 774.22 100
2004/12/01 10:50 $27.70 $805.00 $936.62 100.0 0 932.7 0 0 0 0 776.24 100
2004/12/01 10:55 $32.70 $805.00 $930.32 100.0 0 947.53 0 0 0 0 771.19 100
2004/12/01 11:00 $32.70 $805.00 $936.93 100.0 0 940.92 0 0 0 0 771.2 100
2004/12/01 11:05 $30.59 $805.00 $949.78 100.0 0 933.35 0 0 0 0 773.34 100
2004/12/01 11:10 $32.70 $805.00 $943.21 100.0 0 939.05 0 0 0 0 771.22 100
2004/12/01 11:15 $32.70 $805.00 $943.24 100.0 0 932.91 0 0 0 0 771.2 100
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Table 2: VIC-Snowy inter-regional Settlement Residues, VIC-Snowy inter-regional Loss Residues, Constraint-Based Residues 

Dispatch Flow Adjusted 
Inter-

regional 
Inter-

regional CB residues CB residues CB residues CB residues 

Interval Vic-Snowy 
Price 

Difference 
Settlement 
Residues 

Loss 
Residues 

H>>H-
64_B VH_0350 VH_0200 VH_0100 

2004/12/01 09:25 753.7 $3.22 $2,429.73 $2,429.73 $0.00 $0.00 $0.00 $0.00
2004/12/01 09:30 697.9 $3.04 $2,122.20 $2,122.20 $0.00 $0.00 $0.00 $0.00
2004/12/01 09:35 370.3 -$55.94 -$20,711.79 $275.21 $323,627.47 $0.00 $0.00 $0.00
2004/12/01 09:40 417.5 -$55.82 -$23,304.40 $362.59 $323,531.63 $0.00 $0.00 $0.00
2004/12/01 09:45 552.1 -$55.42 -$30,599.85 $695.01 $328,084.16 $0.00 $0.00 $0.00
2004/12/01 09:50 350.0 -$44.87 -$15,702.76 $219.90 $323,935.94 $3,916.50 $0.00 $0.00
2004/12/01 09:55 350.0 -$41.16 -$14,404.51 $204.47 $936,260.25 $42,434.00 $0.00 $0.00
2004/12/01 10:00 350.0 -$44.86 -$15,699.98 $221.49 $922,954.69 $41,121.50 $0.00 $0.00
2004/12/01 10:05 350.0 -$41.15 -$14,401.96 $203.90 $322,438.41 $4,959.50 $0.00 $0.00
2004/12/01 10:10 200.0 -$27.96 -$5,592.59 $42.08 $322,576.41 $0.00 $5,702.00 $0.00
2004/12/01 10:15 200.0 -$27.96 -$5,591.09 $41.57 $327,380.31 $0.00 $5,704.00 $0.00
2004/12/01 10:20 200.0 -$33.01 -$6,601.76 $48.91 $324,241.84 $0.00 $4,686.00 $0.00
2004/12/01 10:25 200.0 -$40.89 -$8,177.30 $61.36 $325,074.69 $0.00 $3,098.00 $0.00
2004/12/01 10:30 100.0 $244.50 $24,450.30 $20.30 $0.00 $0.00 $0.00 $24,430.00
2004/12/01 10:35 100.0 $776.55 $77,655.15 $34.15 $0.00 $0.00 $0.00 $77,621.00
2004/12/01 10:40 100.0 $774.15 $77,414.69 $34.69 $0.00 $0.00 $0.00 $77,380.00
2004/12/01 10:45 100.0 $774.57 $77,457.09 $35.09 $0.00 $0.00 $0.00 $77,422.00
2004/12/01 10:50 100.0 $776.58 $77,658.30 $34.31 $0.00 $0.00 $0.00 $77,624.00
2004/12/01 10:55 100.0 $771.55 $77,155.25 $36.25 $0.00 $0.00 $0.00 $77,119.00
2004/12/01 11:00 100.0 $771.56 $77,156.34 $36.34 $0.00 $0.00 $0.00 $77,120.00
2004/12/01 11:05 100.0 $773.69 $77,369.10 $35.10 $0.00 $0.00 $0.00 $77,334.00
2004/12/01 11:10 100.0 $771.59 $77,158.55 $36.55 $0.00 $0.00 $0.00 $77,122.00
2004/12/01 11:15 100.0 $771.56 $77,156.34 $36.34 $0.00 $0.00 $0.00 $77,120.00
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Table 3: Hedging using Inter-regional Settlement Residues and Constraint-Based Residues 

Dispatch Flow Adjusted Share of IRSR Share of Share of Share of Share of Share of IRLR/CBR 
Interval Vic-Snowy Price Difference IRSRs Pay-out IRLRs H>>H-64_B VH_0350 VH_0200 VH_0100 Pay-out 

2004/12/01 09:25 753.69 $3.22 0.1327% $3.22 0.1327% -0.0176% 0.2857% 0.5000% 1.0000% $3.22 
2004/12/01 09:30 697.86 $3.04 0.1433% $3.04 0.1433% -0.0174% 0.2857% 0.5000% 1.0000% $3.04 
2004/12/01 09:35 370.25 -$55.94 0.2701% -$55.94 0.2701% -0.0175% 0.2857% 0.5000% 1.0000% -$55.94 
2004/12/01 09:40 417.53 -$55.82 0.2395% -$55.81 0.2395% -0.0175% 0.2857% 0.5000% 1.0000% -$55.81 
2004/12/01 09:45 552.1 -$55.42 0.1811% -$55.42 0.1811% -0.0173% 0.2857% 0.5000% 1.0000% -$55.42 
2004/12/01 09:50 350 -$44.87 0.2857% -$44.87 0.2857% -0.0175% 0.2857% 0.5000% 1.0000% -$44.87 
2004/12/01 09:55 350 -$41.16 0.2857% -$41.16 0.2857% -0.0174% 0.2857% 0.5000% 1.0000% -$41.16 
2004/12/01 10:00 350 -$44.86 0.2857% -$44.86 0.2857% -0.0177% 0.2857% 0.5000% 1.0000% -$44.86 
2004/12/01 10:05 350 -$41.15 0.2857% -$41.15 0.2857% -0.0173% 0.2857% 0.5000% 1.0000% -$41.15 
2004/12/01 10:10 200 -$27.96 0.5000% -$27.96 0.5000% -0.0176% 0.2857% 0.5000% 1.0000% -$27.96 
2004/12/01 10:15 200 -$27.96 0.5000% -$27.96 0.5000% -0.0173% 0.2857% 0.5000% 1.0000% -$27.96 
2004/12/01 10:20 200 -$33.01 0.5000% -$33.01 0.5000% -0.0175% 0.2857% 0.5000% 1.0000% -$33.01 
2004/12/01 10:25 200 -$40.89 0.5000% -$40.89 0.5000% -0.0174% 0.2857% 0.5000% 1.0000% -$40.89 
2004/12/01 10:30 100 $244.50 1.0000% $244.50 1.0000% -0.0173% 0.2857% 0.5000% 1.0000% $244.50 
2004/12/01 10:35 100 $776.55 1.0000% $776.55 1.0000% -0.0173% 0.2857% 0.5000% 1.0000% $776.55 
2004/12/01 10:40 100 $774.15 1.0000% $774.15 1.0000% -0.0177% 0.2857% 0.5000% 1.0000% $774.15 
2004/12/01 10:45 100 $774.57 1.0000% $774.57 1.0000% -0.0173% 0.2857% 0.5000% 1.0000% $774.57 
2004/12/01 10:50 100 $776.58 1.0000% $776.58 1.0000% -0.0176% 0.2857% 0.5000% 1.0000% $776.58 
2004/12/01 10:55 100 $771.55 1.0000% $771.55 1.0000% -0.0173% 0.2857% 0.5000% 1.0000% $771.55 
2004/12/01 11:00 100 $771.56 1.0000% $771.56 1.0000% -0.0174% 0.2857% 0.5000% 1.0000% $771.56 
2004/12/01 11:05 100 $773.69 1.0000% $773.69 1.0000% -0.0176% 0.2857% 0.5000% 1.0000% $773.69 
2004/12/01 11:10 100 $771.59 1.0000% $771.59 1.0000% -0.0175% 0.2857% 0.5000% 1.0000% $771.59 
2004/12/01 11:15 100 $771.56 1.0000% $771.56 1.0000% -0.0176% 0.2857% 0.5000% 1.0000% $771.56 
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3. The Theoretical Framework 

63. The subsequent sections of this paper formally demonstrate the results presented 
informally in the previous sections. This first section sets up the basic framework and defines a 
number of key terms. Section 4 then looks at the current arrangements in the market and 
formally identifies the problems that arise. Section 5 looks at constraint-based residues and how 
they solve the basic problems identified in section 4. Section 6 examines the CSP/CSC approach 
and examines whether or not this approach also solves the basic problems set out in section 4. 

64. The theory in this section is based on a model of the NEM which approximates as 
closely as possible the actual current implementation of the NEM as set out in the NEM dispatch 
engine documentation. The primary difference here is that I ignore FCAS (frequency control and 
ancillary services) markets. The theory in this section allows for locationally-differentiated prices. 
In the next section we will see how the current zonal pricing arrangements in the NEM differ 
from this benchmark. 

65. This section defines a large number of terms. Power is injected or withdrawn from the 
NEM at connection points. Let CP be the set of connection points. For each connection point 

CPi∈ , the net injection of power at that connection point will be denoted iz . Similarly, the 

(nodal) price for electricity at that connection point will be denoted ip . This is the price paid to 
generators for the energy they produce and the price paid by scheduled and non-scheduled load 
for the energy they consume. 

66. For each connection point CPi∈  it is possible to define a function )( ii zB  which 
reflects the total economic welfare or surplus from the production and consumption of electricity 
at that node, when the net injection is iz . This function depends on the demand and supply 
conditions at that connection point, as reflected in the bids and offers of the generators and loads 
connected to that connection point. This function has the important property that the derivative 
of this function with respect to the injection is the nodal price at that injection point: CPi∈∀ , 

)()( iii
i

i zpz
z
B

−=
∂
∂

. 

67. Each connection point is assigned to one and only one region. Let R denote the set of 
regions. For each connection point CPi∈ , let Riregion ∈)(  be the corresponding region. 
For each region there is a single connection point which is denoted the regional reference 
node. For each region Rr∈ , let CPrRRN ∈)(  denote the regional reference node. For each 
region Rr∈ , the regional reference price will be denoted rP . 

68. Within each region, losses between each connection point and the regional reference 
node are modeled through static marginal loss factors. For each connection point CPi∈  the 
loss factor i is denoted  iLF . This is interpreted as follows: If there is a net injection of 1 MW of 
energy at the regional reference node, the total quantity of energy that must be withdrawn at the 
connection point is: iLF . For each region, the loss factor for the regional reference node is, of 

course, exactly one 1)( =rRRNLF . 

69. Regions are joined by directional interconnectors. Let L be the set of interconnectors. 
Each interconnector Ll ∈  carries electric power between an originating region known as the 
“from region” or Rlfr ∈)(  and a terminating region known as the “to region” or Rltr ∈)( . 
The flow on an interconnector is denoted lF  (of course, the flow could be positive or negative). 
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70. For each interconnector Ll ∈  there is an associated function which reflects the 
electrical losses on the interconnector as a function of the flow )( ll FL . In the NEM, this 
function is required to be a simple quadratic and to be zero when the flow is zero (in other 
words, this function takes the form llllll FbFaFL += 2

2
1)(  where la  and lb  are fixed 

constants and 0>la ).7 

71. These losses are assumed to be shared between the from-region )(lfr  and the to-region 
)(ltr . The share of the losses which is attributed to the from-region )(lfr  is called the loss 

share and is given by a fixed constant denoted ls  (and therefore the share of the losses 

attributed to the to-region )(ltr  is ls−1 ). 

72. There are two types of interconnectors – regulated interconnectors and market network 
service providers or MNSPs. Let LMNSP ⊂  be the set of interconnectors which are MNSPs. 
MNSPs differ from regulated interconnectors in two respects. One is that MNSPs are not 
assumed to connect at the regional reference node. Instead, MNSPs may connect at some other 
connection point in a region. A static marginal loss factor is then used to adjust for losses 
between the regional reference node and the MNSP connection point. 

73. For a given interconnector Ll ∈ , let CPlfrcp ∈)(  be the connection point in the 
from-region and CPltrcp ∈)(  be the connection point in the to-region. For an additional 1 
MW of energy at the regional reference node in the from-region, there is an additional )(lfrcpLF  
MW of electricity at the from-region connection point. Similarly, for each additional 1 MW of 
energy at the to-region regional reference node, there is an additional )(ltrcpLF  MW of electricity 
at the to-region connection point. For regulated interconnectors (which are assumed to connect 
at the regional reference node) the from-region loss factor and the to-region loss factor is exactly 
one 1)()( == lfrcpltrcp LFLF . 

74. The second difference between MNSPs and other interconnectors is that MNSPs submit 
an offer curve reflecting their willingness to transport power in response to a price difference 
between two regions. We can summarize that offer curve in the form of a function )( ll FB . This 
function has the property that the derivative of this function with respect to the flow on the 

MNSP is equal to the bid price difference for that flow: MNSPl∈∀ , )()( lll
l

l FDF
F
B

−=
∂
∂

 

where )( ll FD  is the offer function of the MNSP (i.e., the price difference the MNSP requires to 

accept a flow target of lF ) . 

75. The NEM dispatch engine solves a constrained optimisation problem. The dispatch 
engine chooses the injection at each connection point iz , CPi∈∀  and the flow on each 

interconnector lF , Ll∈∀  to maximise the objective function: ∑∑
∈∈

+
MNSPl

ll
CPi

ii FBzB )()(  

subject to certain constraints. There are two important types of constraints: 

                                                      

7 Actually, the NEM dispatch engine uses a “linearised” version of this equation, but this is not strictly 
important for the results here. 
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(a) First, there are constraints which ensure the energy balance in each region. These 
ensure that the sum of the injections in each region less the flow out of the region (plus 
attributed losses) plus the flow into the region (plus attributed losses) is zero: 

Rr∈∀ , 0))1(()( )(
)(:

)(
)(:)(:

=−−++− ∑∑∑
===

ltrcp
rltrl

llllfrcp
rlfrl

lll
riregioni

ii LFLsFLFLsFLFz  

(b) The second set of constraints are referred to as generic constraints. Let GC be the set 
of generic constraints. These constraints are all linear, but otherwise there is a great deal 
of flexibility over their form. These constraints must all be either “less than”, “greater 
than” or “equality” constraints. The nth generic constraint takes the form: 

n

Ll
l

n
l

CPi
i

n
i RHSFz ",," =≥≤+∑∑

∈∈

βα  

76. Of course, a linear constraint is unchanged if it is re-scaled by any constant factor. In 
particular, we can divide each constraint equation through by the right hand side to obtain a 

constraint of the form: 1≤+∑∑
∈∈ Ll

ln

n
l

CPi
in

n
i F

RHS
z

RHS
βα

. We could, without loss of generality, 

assume that all the generic constraints take this standardised form. However, this is not strictly 
necessary for what follows. However, none of the key results that should depend on the absolute 
level of the coefficients, n

iα  and n
lβ , but should only depend on the ratio of these coefficients 

and the constraint right-hand-side: n

n
i

RHS
α

 and n

n
l

RHS
β

. 

77. We will say that a generator CPi∈  or an interconnector Ll ∈  is affected by a 
constraint if 0≠n

iα  or 0≠n
lβ , respectively. 

78. We can say that a constraint is a pure inter-regional constraint if the constraint contains 
no terms relating to an individual connection point. That is, a constraint GCn∈  is a pure inter-
regional constraint if CPi∈∀ , 0=n

iα . Similarly, a constraint could be said to be a pure intra-

regional constraint if the constraint contains no terms relating to an interconnector. That is, a 
constraint GCn∈  is a pure intra-regional constraint if Ll ∈∀ , 0=n

lβ . A mixed constraint is 
a constraint which is neither a pure inter-regional constraint nor a pure intra-regional constraint. 

79. We will say that a pure inter-regional constraint is a pure radial constraint if there is only 
one term (which must be an interconnector term) on the left-hand-side. In other words, a pure-
inter-regional constraint GCn∈  is a radial constraint if 0=n

kβ  for all Lk ∈  except lk = . 

80. We will say that a network is a pure radial network if the only generic constraints are 
pure radial generic constraints. 

81. The problem solved by the NEM dispatch engine can be written: 

∑∑
∈∈

+
MNSPl

ll
CPi

iiFz
FBzB

li

)()(max
,

 subject to: 

Rr∈∀ , 0))1(()( )(
)(:

)(
)(:)(:

=−−++− ∑∑∑
===

ltrcp
rltrl

llllfrcp
rlfrl

lll
riregioni

ii LFLsFLFLsFLFz  

And GCn∈∀ , n

Ll
l

n
l

CPi
i

n
i RHSororFz =≥≤+∑∑

∈∈

βα  
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82. We may choose rμ  to be the Lagrange-multiplier on the region-energy-balance 
constraint and nλ  to be the Lagrange-multiplier on the nth generic constraint. The Lagrangian 
for this maximisation problem can therefore be written: 

∑ ∑∑

∑ ∑∑∑

∑∑

∈ ∈∈

∈ ===

∈∈

−+−

−−++−−

+=

GCn

n

Ll
l

n
l

CPi
i

n
in

Rr
ltrcp

rltrl
llllfrcp

rlfrl
lll

riregioni
iir

MNSPl
ll

CPi
ii

RHSFz

LFLsFLFLsFLFz

FBzBL

)(

)))1(()((

)()(

)(
)(:

)(
)(:)(:

βαλ

μ  

83. Using this formulation, we know from the theory of constrained optimisation that the 
Lagrange-multiplier on the nth generic constraint (also known as the constraint marginal value) 
must be positive when the constraint is of the “less than” form, must be negative when the 
constraint is of the “greater than” form, and has an indeterminate sign when the constraint is of 
the “equality” form. 

84. At this point it is useful to define several new terms: 

 (a) The merchandising surplus is equal to the total revenue to the system operator from 
the purchase and sale of electricity to generators and loads. The merchandising surplus is 
therefore: 

∑
∈

−=
CPi

ii zpMS  

(b) For a given interconnector, the inter-regional settlement residues on that 
interconnector are equal to the surplus accruing from purchasing a volume of electricity 
in the from region (including a share of losses) transporting it and selling it in the to 
region: 

Ll∈∀ , )()()()( )())1(( lfrcpllllfrltrcplllltrl LFLsFPLFLsFPIRSR +−−−=  

(c) For a given region, the region surplus is the residues that accrue to the system operator 
as a result of geographic differentiation of pricing within the region: 

Rr∈∀ , ∑
=

−=
riregioni

iiirr zpLFPRS
)(:

)(  

(e) For a given interconnector, the inter-regional loss residues are equal to the difference 
in the marginal and average losses on the interconnector, valued at a weighted average 
price: 

Ll∈∀ , ))1()(( )()()()( ltrcplltrlfrcpllfrllll LFsPLFsPLLFIRLR −+−′=  

(f) For a given constraint equation, the constraint-based residues are equal to the 
constraint marginal value multiplied by the constraint right-hand-side. 

GCn∈∀ , nnn RHSCBR λ=  

85. It is perhaps worth noting that if we ignore losses, the inter-regional settlement residues 
on a given interconnector are just equal to the price-difference across the inter-connector times 
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the flow on the interconnector. In the case of a regulated interconnector this reduces to: Ll∈∀ , 

llfrltrl FPPIRSR )( )()( −= . The inter-regional loss residues are equal to zero. 

 

First order conditions related to each connection point 
86. The first-order-condition with respect to the injection at connection point i yields the 
following set of equations: 

CPi∈∀ , ∑
∈

=−−−
GCn

n
iniiregionii LFzp 0)( )( αλμ  

87. Under the current approach in the NEM, the regional reference price in each region is 
defined to be equal to the (negative of the) Lagrange multiplier on the energy balance equation. 
Therefore, let’s define the regional reference price in each region as follows: 

Rr∈∀ , rrP μ−=  

88. Under normal operations of the NEM, the regional reference price is also supposed to 
be equal to the nodal price at the regional reference node. In other words, Rr∈∀ , 

)(rRRNr pP = . 

89. We will say that the constraint equations are correctly oriented if and only if there are 
no terms involving the regional reference node in any region in any constraint equation (i.e., if 

RrGCn ∈∈∀ , , 0)( =n
rRRNα ). Using the first order condition above we see that provided all 

the constraint equations are correctly oriented, the regional reference price in each region is just 
equal to the nodal price at the regional reference node. 

Rr∈∀ , 0)()()( =+−=+− rrRRNrRRNrrRRN PpLFPp  

90. Under the assumption that all the constraint equations are correctly oriented, the first-
order condition above implies the following relationship between the spot price at each 
connection point and the regional reference price:8 

CPi∈∀ , ∑
∈

−=
GCn

n
iniiregioni LFPp αλ)(  

                                                      

8 Exactly the same equation can be found in other documents. For example, the part of the National 
Electricity Rules which deals with the Snowy CSP/CSC trial (Part 8(j)) defines the “substitute price” 

pSPd  (for p = the power stations: Lower Tumut and Upper Tumut) as follows: 

∑ ×−×=
k

kpakpSnowyp CoeffCSPTLFDPSPd , , where: SnowyDP  is the dispatch price that applies 

to the Snowy region for the relevant dispatch interval; pTLF  is the transmission loss factor for power 

station "p"; akCSP  is the constraint marginal value ($/MWh) as determined by the dispatch engine for 

each dispatch interval of relieving binding constraint “k” by a marginal amount; and kpCoeff ,  is the 
coefficient assigned to element “p” in constraint “k” from the Murray/Tumut constraint list. 
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91. If we multiply the first first-order-condition by iz  and sum over CPi∈ , we obtain the 
following: 

∑∑ ∑∑
∈∈∈ =∈
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92. Now, using the regional energy balance for each region, we can write the above 
expression as: 
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93. Using the fact that Rr∈∀ , ∑
=

−=
riregioni

iiirr zpLFPRS
)(:

)( , the first order equation 

above yields, ∑∑ ∑∑
∈∈∈ =∈
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,)(:
)( αλ . Similarly, using the fact that 

)()()()( )())1(( lfrcpllllfrltrcplllltrl LFLsFPLFLsFPIRSR +−−−=  we can conclude that the 
merchandising surplus is equal to the sum of the inter-regional settlement residues plus the 
region surplus. 
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94. If the only constraints which are binding are pure inter-regional constraints it follows 
that the region surplus is zero for each region. 0

,
== ∑∑

∈∈∈ CPiGCn
i

n
in

Rr
r zRS αλ . In this case the 

total merchandising surplus is just equal to the sum of the inter-regional settlement residues. 

 

First order conditions related to each interconnector 
95. The first-order-condition with respect to the flow on the interconnector l yields the 
following set of equations: 

Ll ∈∀ , 0))1(1()1()( )()()()( =−′−−−′++− ∑
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96. From the first-order condition above, using the assumption that all the constraints are 
correctly oriented, we have the result the inter-regional settlement residues on an interconnector 
is equal to the inter-regional loss residues on an interconnector, plus an amount which reflects 
the binding constraints affecting that interconnector: 

Ll ∈∀ , ∑
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97. We can immediately conclude that, as long as there are no binding constraints which 
affect this interconnector, the inter-regional settlement residues for that interconnector are 
precisely equal to the inter-regional loss residues. 

98. In addition, we have the “complementary slackness” conditions: 
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99. This condition can be re-written as follows: 
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100. This first proposition below shows that it is possible to divide up the total settlement 
residues into streams which are positive under certain conditions. In the next section we will 
demonstrate that these streams are useful for hedging. 

Proposition 1: The merchandising surplus is equal to the sum of the inter-regional loss residues 
for each interconnector and the constraint-based residues for each generic constraint.  
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In addition: 

(a) for a given interconnector, the inter-regional loss residues are zero when there is no flow 
on the interconnector, are zero when the interconnector is lossless, and are positive 
when both the from-region reference price and the to-region reference price are positive; 

(b) for a given generic constraint, the constraint based residues are zero when the constraint 
is not binding, and are positive provided the constraint is a less-than constraint and has a 
positive right-hand-side or is a greater-than constraint and has a negative right-hand-side. 

Proof of Proposition 1: From the above analysis we have that: 
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,
βλ . Adding these 

two equations together and using the complementary slackness condition we get the required 
result. 

Recall that losses are modelled in the dispatch engine as llllll FbFaFL += 2
2
1)(  where la  and 

lb  are fixed constants (and 0>la ). Therefore 02
2
1 ≥=−′ lllll FaLLF . If there are no losses 

on the interconnector (so that 0=la ), this expression is zero.  As long as the regional reference 
price in both the from region and to region is positive the expression 

))1(( )()()()(
l

ltrlltr
l

lfrllfr LFsPLFsP −+  must be positive, and therefore the inter-regional loss 
residues must be positive. 

The constraint based residues are positive provided the constraint marginal value nλ  and the 

constraint right-hand-side nRHS  have the same sign. In other words, in the case of a less-than 
constraint, the right-hand-side must be positive. In the case of a greater-than constraint, the 
right-hand-side must be negative. 

 

101. We will say that there is consistency between pricing and dispatch at a connection 
point if the marginal price paid at a connection point is equal to the nodal price. ip . Conversely 
we will say that a connection point is mis-priced if this relationship does not hold. When there is 
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consistency between pricing and dispatch a market participant is always dispatched for a price-
quantity combination which lies on its bid or offer curve. 

102. When the price-quantity combination offered to a generator is above that generator’s 
offer curve, that generator is said to be constrained off. A generator which is constrained off has 
an incentive to lower its offer curve in order to increase the amount for which it is dispatched. 
When the price-quantity combination offered to a generator is below that generator’s offer curve, 
that generator is said to be constrained on. A generator which is constrained off has an 
incentive to raise its offer curve in order to reduce the amount for which it is dispatched. 

103. Let’s now turn to look at the problem of arbitrage of hedging instruments across regions. 
The arbitrage problem of a trader in this market can be broken down into two problems: 

(a) The problem of arbitraging hedge price differences between any given connection point 
and the regional reference node in that connection point’s region; and 

(b) The problem of arbitraging hedge price differences between any two regional reference 
nodes. This last problem can, itself, be further broken down into the problem of 
arbitraging between any two adjacent9 regional reference nodes. 

104. Let’s focus first on the problem of hedging between any given connection point and the 
regional reference node in that connection point’s region.10 Consider the problem of a trader 
which purchases a swap contract for a fixed quantity X MW of electricity at a fixed price ip  at 

connection point i and sells a swap contract for the fixed quantity iLFX ×  MW of electricity at 

the regional reference node at the fixed price rP . This trader hedges this transaction by 
purchasing X units of a hedge instrument which has a pay-off equal to XHir . The total revenue 
of the trader is then: 

XHXHXpXpXLFPXLFP iririiirir −++−−  

105. This trader will be able to achieve a perfect hedge (that is, to completely eliminate its 
risk) if and only if: 

constant=++− XHXpXLFP iriir  

106. Since this must be true for whatever quantity of electricity is transacted by this trader, we 
have that the hedge instrument irH  must have the following payout: iirir pLFPH −= .  

107. Let’s now look at the problem of hedging between two regional reference nodes which 
are joined by a regulated interconnector Ll ∈ . Let’s suppose that a trader purchases a swap 
contract for a fixed quantity X of electricity in the from-region, sells a swap contract for a 
(different) quantity of electricity in the to-region, and hedges this transaction using a hedging 
instrument. 

                                                      

9 Two regional reference nodes are “adjacent” if there exists an interconnector between the two relevant 
regions. 

10 Under the current NEM arrangements (with uniform regional pricing) a generator faces no price risk for 
its dispatch to the regional reference node but it may face some “dispatch risk” (that is, the risk that it will 
not be able to be dispatched up to the level it is willing to be dispatched at the regional reference price). 
This dispatch risk cannot, to my knowledge, currently be effectively hedged. 
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 108. Let’s suppose that the flow on the interconnector at the relevant point in time is lF . 

Let’s define the amount 
)/)(1(1( lll FLs

XY
−−

= . The trader then sells a swap contract for the 

quantity of electricity YFLs lll )/)(1(1( −−  at the fixed price of )(ltrP  in the to-region. Since 
some electricity is lost in the transmission process, the amount of the swap contract that the firm 
purchases in the from-region must be adjusted for losses. In fact, the trader must purchase 

YFLs lll )/)(1( +  in the from-region, at the fixed price of, say, )(lfrP . 

109. The trader is then exposed to the risk of price movement in both regions. Let’s suppose 
that this trader hedges this risk by purchasing a hedging instrument which has a payout of lH  
per MW of the hedging instrument purchased. Let’s suppose that this hedging instrument has a 
fixed price of H . The total revenue of this trader is then: 

YHYHYFLsPPYFLsPP lllllfrlfrlllltrltr −++−−−−− ))/(1)(())/)(1(1)(( )()()()(

 

110. This trader will be able to achieve a perfect hedge (that is, to completely eliminate its 
risk) if and only if: 

constant))/(1())/)(1(1( )()( =++−−− YFLsPYFLsPYH llllfrlllltrl  

111. Since this must be true no matter what volume of trade the trader chooses to engage in, 
we need a hedging instrument which has the following payout per MW of hedge purchased: 

))/(1())/)(1(1( )()( llllfrlllltr FLsPFLsPH +−−−=  

112. The following proposition shows that inter-regional settlement residues can be used to 
obtain a perfect hedge, provided that the trader can forecast the flow on the interconnector, especially at 
times of large price differences. The trader obtains this hedge by purchasing a share of the 
interconnector proportional to the inverse of the flow on the interconnector at the future point 
in time. 

113. This result is intuitively clear if we ignore losses – in this case the inter-regional 
settlement residues are just equal to the price-difference between the regions times the flow. A 
share of this residue which is proportional to the inverse of the flow is therefore just proportional 
to the price difference. The next proposition shows that this intuition remains precisely correct 
even in the case where losses are taken into account. 

Proposition 2: Suppose that a trader is trading a fixed quantity of electricity between the regional 
reference nodes of two adjacent regions connected by a regulated interconnector. This trader can 
obtain a perfect hedge for its trade between those regions at some future time provided that: 

(a) the trader can obtain its desired share of the inter-regional settlement residues; 
and  

(b) the trader can perfectly forecast the flow on the interconnector at the future 
time. 

The total volume of such hedges available is equal to the flow on the interconnector at that point 
in time. 

Proof of Proposition 2: 
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Let’s suppose that the trader purchases a share 
lF

1
 of the inter-regional settlement residues for 

this interconnector. The resulting hedge payoff is: 

))/(1())/)(1(1(

1

)()( llllfrlllltr

l
l

l

FLsPFLsP

IRSR
F

H

+−−−=

=
 

This demonstrates that a share of the inter-regional settlement residues is, in fact, a perfect hedge 
for hedging inter-regional trading risk. The total volume of such hedges which can be written is 
equal to the flow on the interconnector. 

 

114. There are, of course, several problems with the use of inter-regional settlement residues 
to hedge inter-regional trading risk: 

 (a) First, the trader must be able to forecast the level of flow which will arise on the 
interconnector in advance – especially at times of large inter-regional price differences. 
Importantly, this flow is not necessarily related to the physical limits on the transmission 
network. As I showed earlier, in the presence of intra-regional constraints or loop-flow, 
the price-difference between regions can be completely unrelated to the flow on the 
interconnector. In addition, for the same reasons, the total volume of such hedges which 
can be simultaneously written may be much less than the physical limits on the 
transmission network. 

(b) Second, the inter-regional settlement residues may be negative and therefore are 
incompatible with the current arrangements for auctioning settlement residues in the 
NEM. In instances where large negative residues threaten to accumulate, NEMMCO is 
forced to intervene to limit counter-price flows. 

115. What does it mean for a given hedging instrument to be “firm”?  As we will see, in 
general, obtaining a perfect hedge will require access to two instruments: (a) the “inter-regional 
loss residues” for hedging against that component of residues which is due to losses and (b) 
another instrument for hedging that component of residues which arises from network 
congestion. In general the inter-regional loss residues are not “firm”. The concept of “firmness” 
relates primarily to the hedging of that component of residues which arises from network 
congestion. 

116. We will say that a given hedging instrument lH  for hedging 1 MW of a firm transaction 
between two adjacent regions joined by interconnector Ll ∈  is firm if it is possible to obtain a 
perfect hedge by constructing a portfolio consisting of lH  and the inter-regional loss residues: 

lIRLR . Specifically, lH  will be said to be firm if it is possible to obtain a perfect hedge by 
purchasing: 

(a) a share of the inter-regional loss residues inversely proportional to the flow on 

the interconnector at that point in time: 
l

l

F
IRLR

; and 

(b) a fixed share of the instrument lH . 

117. We saw earlier that the inter-regional settlement residues can be expressed as the sum of 
the inter-regional loss residues and another term: 
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118. Let’s suppose that these settlement residues are separated into two components – the 
inter-regional loss residues lIRLR  and the remainder ll IRLRIRSR − . We saw earlier that it is 
possible to form a perfect hedge using the inter-regional loss residues and the hedge instrument 

∑
∈

=
−

GCn

n
l

n

l

ll

F
IRLRIRSR

βλ . It therefore follows that a given hedging instrument is firm if and 

only if the purchase of a fixed share of lH  is equal to ∑
∈GCn

n
l

nβλ  for all possible realizations of 

nλ . 

119. It is worth emphasizing that according to this definition of “firmness”, even if a trader 
has access to a firm hedging instrument, it doesn’t automatically follow that the trader will be able 
to write a perfect hedge. In order to obtain a perfect hedge a trader must have access to a firm 
hedging instrument and access to the inter-regional loss residues (and, in addition, must be able to 
forecast the flow). 
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4. The Status Quo: Zonal Pricing in the NEM 

120. The foregoing analysis has assumed a form of nodal pricing. Of course, the NEM does 
not at present use nodal pricing – rather it uses a form of “zonal” or “regional” pricing. This 
section formally identifies the problems that arise in a zonal or regional pricing approach. 

121. Under a zonal pricing scheme each generator is paid the regional reference price 
(adjusted for static intra-regional marginal losses, i.e., ir LFP ) for its output. Similarly, each load 
receives the regional reference price for its output. 

122. We can express this as an (implicit or explicit) payment from the system operator to each 
generator or load to compensate them for the difference between the local nodal price and the 
regional reference price. Specifically, if the output of a given generator is iq , that generator 

receives a payment equal to iiir qpLFP )( − . Similarly, if the consumption of a given load is id , 

that load must make a payment to the system operator equal to iiir dpLFP )( − . 

123. Since this applies to all generators and loads at a connection point, if iz  is the net 

injection of the market participants for connection point CPi∈  (i.e., iii dqz −= ), the current 
zonal or regional pricing arrangements are equivalent to making a transfer from the system 
operator to these market participants in the amount iiir zpLFP )( − . The total payment from 

the system operator to market participants in a given region is ∑
=

−
riregioni

iiir zpLFP
)(:

)( .  

124. In the previous section we defined the region surplus in a region as follows: 

∑
=

−=
riregioni

iiirr zpLFPRS
)(:

)( . It is clear, therefore, that the current zonal pricing arrangements 

in the NEM is equivalent to taking an amount equal to the region surplus and paying this amount 
out to market participants in each region. 

125. The total surplus accruing to the system operator is equal to the merchandising surplus, 
less the payments to each generator. Since the merchandising surplus is equal to the sum of the 
inter-regional settlement residues and the regions surplus, we can see that the total surplus 
accruing to the system operator under the status quo is just the inter-regional settlement residues. 
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126. Under the status quo do all market participants have an incentive to submit a bid or offer 
which reflects their true marginal cost? The answer is no. 

127. Under a zonal pricing region, a market participant at connection point CPi∈  
producing the net injection iz  receives a revenue equal to the nodal price times the net injection 
at that connection point plus the payment from the system operator, giving a total revenue of: 

iiriiirii zLFPzpLFPzp =−+ )( . The marginal price is therefore the RRP adjusted for static 

losses: ir LFP . 
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128. In other words, under a zonal pricing regime, a market participant is paid the adjusted 
RRP ( ir LFP ), but is dispatched for a quantity which corresponds to the nodal price ip . 
Therefore, if these two prices differ, mis-pricing will arise. 

129. From the previous section we know that CPi∈∀ , ∑
∈

=−
GCn

n
iniiiregion pLFP αλ)( . It 

follows that a connection point will be mis-priced if and only if 0≠∑
∈GCn

n
inαλ . That is, if and 

only if there is at least one binding constraints for which that connection point has a non-zero 
term in the corresponding constraint equation. 

130. We can see that under the status quo there will arise mis-pricing at some connection 
points in the NEM unless all constraints which bind with some positive probability are pure 
inter-regional constraints.  

131. Let’s now explore the effectiveness of hedging arrangements under the status quo. As we 
have seen, under the status quo, all market participants in a region receive the regional reference 
price. Therefore there is no need for hedging between a participant’s connection point and the 
regional reference node.11 We can therefore focus on the case of hedging between two regional 
reference nodes. 

132. Let’s consider the firmness of the inter-regional settlement residues as a hedging device.  
Under the status quo, the inter-regional settlement residues are the sum of two components – (a) 
the inter-regional loss residues and (b) a component reflecting the impact of binding constraints. 
Since the inter-regional loss residues are not “firm” it follows that the “bundled” inter-regional 
settlement residues can never be firm either. 

133. However, let’s make the assumption that somehow a trader can separate out (or doesn’t 
care about) the impact of the inter-regional loss residues. In particular, let’s assume that somehow 
a trader has access to the inter-regional loss residues lIRLR  and the remainder ll IRLRIRSR −  
for each interconnector. 

134. The question for us, therefore, is whether or not ll IRLRIRSR −  is a firm hedging 

instrument. We saw earlier that ll IRLRIRSR −  is firm if and only if the purchase of a fixed 

share of ll IRLRIRSR −  is equal to ∑
∈GCn

n
l

nβλ  for all possible realizations of nλ . 

135. Consider the purchase of a fixed share lF  of  ll IRLRIRSR − . From the analysis above, 

this is equal to ∑
∈GCn l
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GCn l
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βλβλ  for all possible 

realisations of nλ  and lF . This can only be true when there is only one constraint involving the 

interconnector in question and that constraint is of the form n
l

n
l RHSF ≤β . In this case we can 

choose n

n
l

l RHS
F

β
= . 

136. In other words, under the status quo the inter-regional settlement residues are only a firm hedging 
instrument when the only binding constraints are pure radial constraints. (And, even in the case where the 

                                                      

11 At least, there is no need for hedging of price risk. There may still arise some dispatch risk. 
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only constraints which bind are pure radial constraints, a trader would still need to obtain access 
to the inter-regional loss residues to obtain a perfect hedge). 

137. These results are summarised in the following Proposition: 

Proposition 3: Under the current zonal or regional pricing arrangements in the NEM: 

(a) The total surplus or residues accruing to the system operator is equal to the sum of the 
inter-regional settlement residues; 

(b) Mis-pricing will arise at some connection points unless all constraints which bind with 
positive probability are pure inter-regional constraints. 

Formally: mis-pricing at a connection point CPi∈  will occur if and only if there are 
exists a constraint GCn∈  for which 0≠n

i
nαλ . 

(c) The inter-regional residues are not a firm instrument for hedging transactions between 
regional reference nodes unless all constraints which bind with positive probability are 
pure radial constraints. 

Formally: for an interconnector Ll ∈ , the inter-regional settlement residues lIRSR  are 
firm if and only if there is only one constraint which may bind which affects that 

interconnector and that constraint has the “pure radial” form n
l

n

l
RHSF
β

≤ . 
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5. Constraint-Based Residues 

138. Let’s now consider how the constraint based residues approach addresses the problems 
identified with the status quo above. 

139. The constraint-based residues approach can be defined formally as follows. First, a set of 
constraints which fall within the constraint-based residues regime is defined. Let’s call this set 
CBRC. GCCBRC ⊂ .  

140. For each constraint in this set, there is a corresponding set of payments from each 
generator and each interconnector to the system operator (analogous to the “CSP” payments in 
the CSP/CSC approach as set out in the next section). These payments could, of course, be 
negative (in which case they would correspond to a payment from the system operator to the 
generator or interconnector, respectively). For each constraint CSPCn∈ : 

(a) for each connection point CPi∈ , a payment is made from each generator to 
the system operator in the amount i

n
i

n qαλ  where iq  is the output of the 
generator at that connection point. Similarly, for each connection point CPi∈ , 
a payment is made to each load in the amount i

n
i

n dαλ , so the net payment to 

all the market participants at a given connection point CPi∈  is i
n
i

n zαλ  

where iz  is the net injection. 

(b) for each interconnector Ll ∈ , a payment is made from that interconnector to 
the system operator in the amount l

n
l

n Fβλ  where lF  is the flow on the 
interconnector. 

141. The system operator then gathers these revenues into a fund, known as a constraint 
based residue fund and then auctions the right to these funds (equal to nnn RHSCBR λ= ) back 
to the market participants. The inter-regional settlement residues (less any funds siphoned off to 
the constraint-based residue funds) continue to be auctioned as at present. 

142. It is straightforward to check that this constraint based residue scheme is “revenue 
neutral” in the sense that the total revenue received from market participants and from 
interconnector is precisely equal to the system operator’s obligations to each constraint-based 
residues fund. For each CBRCn∈ : 
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143. In the light of the two key problems highlighted in the previous section, there are two 
key questions which we would like to ask of the constraint-based residues approach: 

(a) First, does the constraint-based residues approach restore the pricing signals on 
generators? 

(b) Second, does the constraint-based residues approach allow for fully-firm intra-
regional and inter-regional hedging? 

144. Does the constraint-based residues mechanism restore the incentives on generators and 
loads to submit bids and offers which reflect their true costs? Under the constraint-based 
residues mechanism the total payment to a market participant at a connection point CPi∈  is as 
follows: 
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145. As a result, the marginal price is: 
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146. It is clear that the constraint-based residues mechanism achieves consistency between 
pricing and dispatch if and only 0=∑

∉CBRCn

n
i

nαλ . That is, if and only if the set of constraints in 

the constraint-based residues regime includes all those constraints which might bind with positive 
probability and which affect the given connection point. 

147. Now let’s examine the hedging implications under a constraint-based residues regime. 
Consider first the task of a market participant located at a connection point CPi∈  which is 
seeking to obtain a perfect hedge for a transaction of a fixed volume of electricity with the 
regional reference node. As we saw earlier, this market participant needs to find a perfect hedge 
for the difference between the regional reference price adjusted for the loss factor ir LFP  and 

the local marginal price, which is ∑
∈

−
CBRCn

n
i

n
ir LFP αλ . Hence, the market participant must find a 

hedge instrument with a payoff equal to ∑
∈

=
CBRCn

n
i

n
irH αλ  for all possible realisations of nλ . 

148. The market participant can achieve this payoff by purchasing a share n

n
i

RHS
α

 of the 

constraint-based residue fund nCBR  for each constraint covered by the constraint-based 

residues regime: CBRCn∈ . The resulting payoff is ir
CBRCn

n
i

n

CBRCn

n
n

n
i HCBR

RHS
== ∑∑

∈∈

αλ
α

 

as desired. We can conclude that any market participant can obtain a perfect hedge for a 
transaction between its connection point and the regional reference node. 

149. Now consider the task of hedging a transaction between two regional reference nodes. 
In the previous section we saw that a source of residues is “firm” for hedging an inter-regional 
transaction if a fixed fraction of that source of residues has a payoff equal to ∑

∈GCn

n
l

nβλ  for all 

possible realisations of nλ . 

150. Consider the portfolio formed by purchasing a share n

n
l

RHS
β

 of the constraint-based 

residue fund nCBR  for each constraint covered by the constraint-based residues regime: 

CBRCn∈ . The resulting payoff is ∑∑
∈∈

=
CBRCn

n
l

n

CBRCn

n
n

n
l CBR

RHS
βλ

β
. 

151. It is clear that this portfolio is fully firm in the case where all the constraints which bind 
with positive probability are in the set CBRC. 

152. But what about the more general case where there are some constraints which bind 
which are not in the set CBRC? As under the status quo, there remains the possibility of hedging 
using the inter-regional settlement residues. The inter-regional settlement residues under this 
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approach are equal to the inter-regional settlement residues under the status quo less the 
payments to the system operator: 

∑∑
∉∈

+=−=
CBRCn

l
n
l

n
l

CBRCn
l

n
l

nCBR
l

CBR
l FIRLRFIRSRIRSR βλβλ  

153. As in the previous section, it follows that l
CBR
l IRLRIRSR −  is a firm hedge if and only 

if the only binding constraint on the interconnector is a constraint which has the pure radial 
form.. 

154. We can conclude that it is possible to construct a firm hedge from the constraint-based 
residues and the inter-regional settlement residues if and only if either 0=∑

∉CBRCn

n
l

nβλ , or there 

is only one constraint binding that is not under the constraint-based residues regime and that 
constraint has the pure radial form. 

155. Furthermore, in the case where all constraints which bind are included in the set CBRC, 
the inter-regional settlement residues are equal to the inter-regional loss residues. So, in this case, 
not only is it possible to construct a hedging instrument which is firm using the constraint-based 
residues, it is also possible to construct a perfect hedge (provided the trader can forecast the 
flows on the interconnector at the relevant time). 

Proposition 4: Under the constraint-based residues approach: 

(a) The total surplus or residues accruing to the system operator is equal to the sum of the 
inter-regional settlement residues plus the constraint-based residues; 

(b) Mis-pricing will arise at some connection points unless all constraints which bind with 
positive probability, and which are not included in the constraint-based residues 
mechanism, are pure inter-regional constraints. 

Formally: mis-pricing at a connection point CPi∈  will occur unless 0=∑
∉CBRCn

n
i

nαλ  

for all possible realisations of nλ . 

(c) All market participants can form a perfect hedge for transactions between their 
connection point and the local regional reference node. 

(c) The constraint-based residues and the inter-regional settlement residues can be used to 
construct a firm instrument for hedging an intra-regional transaction provided any 
constraint which binds with positive probability, and which is not included in the 
constraint-based residues mechanism, is a pure radial constraints. 

Formally: for an interconnector Ll ∈ , the constraint-based residues and the inter-
regional settlement residues CBR

lIRSR  can be used to construct a firm hedge provided 

that either 0=∑
∉CBRCn

n
l

nβλ  or there is only one constraint CSPCn∉  which may bind 

which affects that interconnector and that constraint has the “pure radial” form 
n

l RHSF ≤ . 
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6. The CSP/CSC proposal 

156. In a series of papers, CRA set out a proposal which appears to be designed to address 
the two problems identified at the outset of this paper, namely (a) the mis-pricing at individual 
connection points arising from the current zonal or regional approach to pricing and (b) the lack 
of firmness on the inter-regional settlement residues. 

157. CRA’s proposal can be described formally as follows. First, a set of constraints which fall 
within the CSP/CSC regime is defined. Let’s call this set CSPC. This set is a subset of all the 
generic constraints GCCSPC ⊂ . Next, for each constraint CSPCn∈  in this set the 
CSP/CSC mechanism can be represented as two payments: First, a payment is made from each 
generator and each interconnector to the system operator. Second, a payment is made to each 
generator and each interconnector, known as a “CSC” payment. These payments or transfers are 
defined as follows.12 

158. First, the payments from the generator to the system operator are defined as follows. 
CRA sometimes loosely refer to these payments as “CSP payments”. However, to be clear, they 
use the term “CSP” to refer to the constraint “marginal value”, here denoted nλ . For each 
constraint CSPCn∈ : 

(a) for each connection point CPi∈ , a payment is made from each generator to 
the system operator in the amount i

n
i

n qαλ  where iq  is the output of the 
generator at that connection point. Similarly, for each connection point CPi∈ , 
a payment is made to each load in the amount i

n
i

n dαλ , so the net payment to 

all the market participants at a given connection point CPi∈  is i
n
i

n zαλ  

where iz  is the net injection.13 

(b) for each interconnector Ll ∈ , a payment is made from that interconnector to 
the system operator in the amount l

n
l

n Fβλ  where lF  is the flow on the 
interconnector. 

159. Second, the CSC payments are defined as follows. For each constraint CSPCn∈  a set 
of numbers n

ia  for each connection point CPi∈ ,  and n
lb  for each interconnector, are chosen. 

Then: 

(a) for each connection point CPi∈ , a payment is made to each generator or load 
in the amount nn

i
n RHSaλ . 

(b) for each interconnector Ll ∈ , a payment is made to that interconnector in the 
amount nn

l
n RHSbλ . 

                                                      

12 As above, these payments could be negative, in which case the revenue flows in the opposite direction. 
The statement that a given payment is “from A to B” is only a definition of the direction for positive flows. 

13  In the notation of CRA, the payment from each generator to the system operator is equal to: 
CSPk*MWGENp*COEFFkp where MWGENpp is the generation by participant p, CSPk is the “marginal 
value” of the kth constraint, and COEFFkp is the coefficient of participant p in the kth constraint equation. 
See page 12 of CRA (2005) 
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160. We will say that a CSP/CSC scheme is revenue neutral if the total payments to and 
from the system operator are zero. A CSP/CSC scheme which is revenue neutral does not 
require any outside source of funding, or generate a surplus for the system operator. 

161. It is straightforward to check that the CSP/CSC payments are “revenue neutral” if and 
only if for each constraint CSPCn∈  the numbers n

ia  for each connection point CPi∈ ,  and 
n
lb  for each interconnector, sum to one. That is, if and only if: for all CSPCn∈ , 

1=+∑∑
∈∈ Ll

n
l

CPi

n
i ba . 

162. To see this, consider adding up the total payments to and from the system operator 
associated with a given constraint CSPCn∈ . 
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163. Another condition that might be expected of a CSP/CSC scheme is that it should only 
involve payments to or from generators or interconnectors which are directly affected by a given 
set of constraints. In other words, if a generator is not directly affected by a given constraint 
(perhaps because that generator is located in a different region), that generator should not receive 
or make any payments under the CSP/CSC scheme. We will say that a CSP/CSC scheme is 
narrowly focused if the scheme only involves payments to or from generators or 
interconnectors which are directly affected by constraints in the scheme. In other words, a 
CSP/CSC scheme is narrowly focused if CSPCn∈∀ , 00 =⇒= n

i
n
i aα  and 

00 =⇒= n
l

n
l bβ .14 

164. If a CSP/CSC scheme is “narrowly focused” it can be expressed as a set of numbers n
iz  

and n
lF  which satisfy: n

n
i

n
in

i RHS
z

a
α

=  and n

n
l

n
ln

l RHS
F

b
β

= . The numbers n
iz  and n

lF  correspond 

to the “entitlement” or “allocation” of “rights” under the CSP/CSC scheme. At this stage we will 
allow these allocations to vary with each constraint.15 A narrowly focused CSP/CSC scheme is 
revenue neutral if and only if the numbers n

iz  and n
lF  satisfy the corresponding constraint 

equation with equality. In other words, a narrowly focused CSP/CSC scheme is revenue neutral if 
and only if CSPCn∈∀ , n

Ll

n
l

n
l

CPi

n
i

n
i RHSFz =+∑∑

∈∈

βα . 

165. As in the previous section, there are two key questions which we would like to ask of the 
CSP/CSC scheme: 

(a) First, does the CSP/CSC mechanism restore the pricing signals on generators? 

                                                      

14 CRA do not use the term “narrowly focused”. However they do say that “If some participant or 
interconnector term has a zero coefficient in the constraint, this actually implies zero participant in both 
CSC and CSP arrangements”, which implies the same concept. See page 14, CRA (2005). . 

15 CRA note that “in principle, a different CSC may apply for each different constraint form”. See page 15, 
CRA (2005). 
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(b) Second, does the CSP/CSC mechanism allow for fully firm intra-regional and 
inter-regional hedging?16 

166. Does the CSP/CSC mechanism restore the incentives on generators and loads to submit 
bids and offers which reflect their true costs? Under the CSP/CSC mechanism the total payment 
to a market participant at a connection point CPi∈  is the nodal price times the output of the 
generator plus the payment to the generator arising from the zonal pricing regime, less the CSP 
payment plus the CSC payment: 

∑∑
∈∈

+−−+
CSPCn

nn
i

n

CSPCn
i

n
i

n
iiirii RHSazzpLFPzp λαλ)(  

167. As a result, the effective local marginal price is ∑∑
∉∈

+=−
CSPCn

n
i

n
i

CSPCn

n
i

n
ir pLFP αλαλ . 

In other words, as with the constraint-based residues approach, the CSP/CSC mechanism 
eliminates mis-pricing if and only if the set of constraints in the CSP/CSC regime includes all 
those constraints which might bind with positive probability and which affect the given 
connection point. (In other words, if and only if 0=∑

∉CSPCn

n
i

nαλ ) 

168. CRA make this point themselves, noting that: the “the signals faced by participants will 
not reflect any effects arising out of constraints which may be binding, but which are not 
explicitly covered by the proposal”.17 

169. What about hedging? Does a revenue neutral, narrowly focused CSP/CSC mechanism 
allow for fully firm intra-regional and inter-regional hedging? 

Inter-regional hedging 
170. Let’s start by focusing on inter-regional hedging. In the previous sections we saw that a 
given inter-regional hedging instrument is firm if and only if a fixed share of the instrument is 
equal to ∑

∈GCn

n
l

nβλ  for all realisations of nλ . In the CSP/CSC mechanism, the only inter-

regional hedging instruments which are available are the inter-regional settlement residues 
(modified by any relevant CSP or CSC payments). 

171. The inter-regional settlement residues that arise under the CSP/CSC mechanism are 
equal to the status quo inter-regional settlement residues plus the payments to and from the 
interconnector as noted above. In other words: 

                                                      

16 Do CRA actually make the claim that the CSP/CSC mechanism can achieve fully firm inter-regional 
hedging? Most of the CRA documents do not seem to make this claim explicitly. However, CRA (2005) 
does seem to claim that the CSP/CSC mechanism can be designed so as to achieve fully firm hedging. That 
document claims that “both intra-regional and inter-regional settlement surpluses can be made as firm as 
the RHS. Thus, if all generator and ancillary service terms are included in the regime, the settlement surplus 
will be as firm as the underlying transmission system, after adjustment for the impact of local load 
variations”. CRA (2005), page 20. CRA (2004a) seems to make a slightly lesser claim: “Hedging on each 
interconnector can be totally firm, up to the minimum of (a) the actual physical interconnector capacity; 
and (b) its share, as defined by its CSC, of the ‘unsupported’ trans-regional transfer capacity augmented by 
any participant CSCs which may have been entered into”. CRA (2004a), page 34. 

17 CRA (2005), page 12. 
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172. As we have seen in the previous two sections, where a constraint is binding which is not 
included in the CSP/CSC mechanism, it is only possible to obtain a perfect hedge using inter-
regional settlement residues when that constraint is of the “pure radial” form. To focus on the 
impact of the CSP/CSC mechanism, let’s assume that all the binding constraints are included in 
the CSP/CSC mechanism, so that ∑

∈

+=
CSPCn

n
l

nn
l

CSP
l bRHSIRLRIRSR λ . 

173. Let’s focus first on the case of pure inter-regional constraints. The case of “mixed” 
constraints is considered next. 

174. Let’s suppose that a market participant attempts to purchase a fixed share 
lF

1
 of the 

relevant inter-regional settlement residues. In order for this to yield a perfect hedge it must be 

that ∑∑
∈∈

==−
GCn

n
l

n

CSPCn

n
l

nn

l
l

CSP
l

l

bRHS
F

IRLRIRSR
F

βλλ1)(1
 for all realisations of nλ . 

175. This expression can only hold for all realisations of nλ  if we choose n
l

n
ln

l RHS
F

b
β

= . In 

other words, the inter-regional settlement residues are a firm hedging instrument if and only if 
the CSP/CSC mechanism is chosen in such a way that the allocations to each interconnector are 
independent of the constraints that are binding: l

n
l FF = . Revenue neutrality then implies that 

we must choose lF  so that n
l

Ll

n
l RHSF =∑

∈

β , CSPCn∈∀ . In other words, it must be that 

the numbers lF  must be chosen so as to be a solution (with equality) to every pure inter-regional 
constraint which may simultaneously bind in the set of constraints included in the CSP/CSC 
mechanism. 

176. But, it may well be the case that it is not possible to find a set of numbers  lF  which 
satisfy all the pure inter-regional constraints in the CSP/CSC mechanism with equality. For 
example, it might be that there are just two interconnectors in the network, but there are three 
distinct pure-inter-regional constraints affecting these interconnectors. In this case, there is no 
guarantee that it will be possible to find a set of numbers  lF  which satisfy all the pure inter-
regional constraints in the CSP/CSC mechanism with equality. 

177. For example, suppose that we have three constraints which may bind. The first 
constraint has the form 2000≤→NSWSNF . The second constraint has the form: 

1350164.079.0 ≤− →→ SNVICNSWSN FF  (this is the form of the Murray-Tumut constraint in the 
northerly direction, ignoring terms involving Upper and Lower Tumut). The third constraint is of 
the form: 1500≤→SNVICF . These constraints cannot all be satisfied with equality, so there is no 
way to obtain a perfect hedge using a revenue neutral, narrowly focused CSP/CSC mechanism. 

178. More generally, if the potentially binding constraints include pure radial constraints of 
the form n

l RHSF ≤ , it follows that we must choose n
l RHSF =  and these values must satisfy 
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all the constraints (whether pure radial or not) with equality. This is clearly a very strong 
condition which is highly unlikely to be satisfied.18 

179. As a result, it is not the case that under a revenue neutral, narrowly focused CSP/CSC 
mechanism a market participant can always obtain a perfect hedge for inter-regional trading using 
a simple fixed portfolio. At best, the portfolio necessary to obtain perfect hedging will vary with 
the combination of constraints which are binding. 

180. CRA do not appear to claim that the CSP/CSC mechanism will be revenue neutral. 
Specifically, CRA note that the mechanism will not be revenue neutral 

“if CSCs have been entered into for higher or lower generation levels than can actually 
be sustained, given the constraint RHS value in a particular period. Thus, exactly the 
same ‘revenue adequacy’ problem arises with respect to CSCs as in standard FTR 
theory”.19 

181. CRA go on to discuss how this surplus or deficit of revenue could be funded: 

• “The CSC payments could be simply scaled down, or conceivably up, if a deficit 
or surplus accumulates over time, as in many FTR markets; and/or 

• The CSC payments could be supported by CSC contracts under which payments 
are made to and from the TNSP, as discussed with respect to interconnector 
support; and/or 

• The CSC payments pool could be supported by some form of uplift, thus 
spreading the cost of congestion across loads”.20 

182. In Appendix B of CRA (2004b), CRA provide an example of an implementation of a 
CSP/CSC mechanism which is not revenue neutral.21 In contrast, the constraint-based residues 
approach is automatically revenue neutral and requires no additional mechanisms to ensure that 
the system operator incurs neither a surplus nor a deficit. 

183. Now let’s allow for the possibility of mixed constraints. Allowing for the possibility of 
terms in the constraint equations affecting individual connecting points increases the degree of 

freedom of the designer of the mechanism. Now, let’s define n

n
i

n
in

i RHS
z

a
α

=  for some set of 

values n
iz . Now, the problem of finding a revenue neutral, narrowly focused CSP/CSC 

                                                      

18 We can define a mechanism to be “revenue adequate” if the revenue received by the system operator 
exceeds its obligations. In the context of this model, the CSP/CSC mechanism is revenue adequate if 

CSPCn∈∀ , 1<+∑∑
∈∈ Ll

n
l

CPi

n
i ba . From the analysis above we can see that it is possible to construct 

a CSP/CSC mechanism which is revenue adequate for pure inter-regional constraints by choosing a set of 
values lF  which satisfy all the pure inter-regional constraints in the CSP/CSC mechanism simultaneously 
(not necessarily with equality).  

19 CRA (2004a), page 37. 

20 CRA (2004a), page 37-38. 

21 See CRA (2004b), page 60 
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mechanism comes down to the problem of finding a set of allocations n
iz  and lF  satisfying all 

the binding constraints with equality. That is, which satisfies: 

CSPCn∈∀ , n

Ll
l

n
l

CPi

n
i

n
i RHSFz =+∑∑

∈∈

βα  

184. We saw earlier that it is not possible to find a solution to this problem when all the 
constraints are pure inter-regional constraints. However, in general, it will be possible to find a 
solution when enough constraints have intra-regional terms.  

185. For example, let’s vary the three constraints above slightly. The three constraints will 
now take the following form: 

1) 2500≤→NSWSNF  

2) 13509.0164.079.0 ≤+− →→ TSNVICNSWSN QFF  

3) 1900≤→SNVICF  

186. Let’s choose 2500=→NSWSNF , 1900=→SNVICF . This implies that we must chose Tz  

to satisfy the equation: 1350164.079.09.0 =−+ →→ SNVICNSWSNT FFz  which implies we must 

choose 22.348−=Tz . 

187. This implies that the CSC payment to Tumut generation, given these parameters, is equal 
to 22 4.3139.0 λλ ×−=Tz . As long as the Murray-Tumut constraint is binding in this example, 
Tumut generation receives a total CSP + CSC payment equal to 

)22.348(9.0)(9.0 22
TTT zzz +×−=− λλ . Tumut is unambiguously worse off than under the 

status quo. 

188. In other words, although it is possible to ensure that the IRSRs are a firm hedging 
instrument in this case, it requires a market participant to accept an allocation of CSCs which 
leaves them significantly worse off. It is unclear how this could be achieved in practice. 

Intra-regional hedging 
189. Let’s now look at intra-regional hedging under the CSP/CSC mechanism. CRA do not 
appear to discuss the issue of intra-regional hedging. I can find no mention in the CRA 
documents of how a market participant obtains a firm hedge between its local connection point 
and the regional reference node. 

190. We saw earlier that a participant can obtain a perfect intra-regional hedge if it can obtain 
access to a hedging instrument with a payoff equal to eff

iirir pLFPH −= , where eff
ip  is the 

effective local spot price. We saw above that the effective local spot price under the CSP/CSC 
regime is ∑∑

∉∈

+=−=
CSPCn

n
i

n
i

CSPCn

n
i

n
ir

eff
i pLFPp αλαλ , so we need a hedging instrument with 

a payoff equal to ∑
∈

=
CSPCn

n
i

n
irH αλ  for all realisations of nλ .  

191. Where do the residues necessary to form this hedging instrument come from? These 
residues must come from the “CSC” payments in some way. It must be that the market 
participants are able to trade these CSC payments between themselves in some way so as to 
obtain the hedge portfolio that they desire. But what form would that trading take? How would 
the CSC payments be “bundled” in that market? 
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192. Let’s suppose, first, that each connection point makes available to trade a proportion of 
the total CSC payments it receives. In other words, each connection point makes available for 
trade a residue fund equal to: ∑

∈CSPCn

nn
i

n RHSaλ . We need that the purchase of a fixed proportion 

iz
1

 of this residue fund yields the payoff ∑
∈CSPCn

n
i

nαλ  for all realisations of nλ . 

193. But this is only possible if we choose the n
ia  are chosen so that n

i
n
in

i RHS
z

a
α

=  for some 

set of values iz . 

194. Now, as before, if we focus on pure intra-regional constraints, revenue neutrality implies 
that CPSCn∈∀  1=∑

∈CPi

n
ia , which implies that CPSCn∈∀ , n

CPi
i

n
i RHSz =∑

∈

α . This 

implies, in turn, that the values iz  satisfy all the intra-regional constraints with equality. 

195. We saw above that it is likely to be the case that it is not possible to find a set of values 

iz  which satisfy all the intra-regional constraints with equality. We can conclude that if the 
market participants can only trade in shares of the total CSC payments at each connection point, 
it will not always be possible to design a revenue neutral, narrowly focused CSP/CSC mechanism 
which allows for perfect intra-regional hedging. 

196. Therefore, if we are to obtain perfect intra-regional hedging we must assume a greater 
degree of “disaggregation” of the CSC payments. For example, let’s suppose that it is possible for 
market participants to purchase not just the total CSC payments at each connection point, but 
the CSC payments at each connection point broken down by the corresponding constraint. The 
number of such “markets” in CSC payments could easily exceed the number of constraints (and 
therefore the number of constraint-based residues) by a large margin.22 

197. In other words, each market participant can choose how much it purchases of a fund 

with the payoff nn
i

n RHSaλ . We need that the purchase of a fixed proportion n
iz
1

 of this 

residue fund (and summed over CSPCn∈ ) yields the payoff ∑
∈CSPCn

n
i

nαλ  for all realisations of 

nλ . As before, this is only possible if we choose the n
ia  are chosen so that n

n
i

n
in

i RHS
z

a
α

=  for 

some set of values n
iz . In this case, it will be possible to obtain revenue neutrality by choosing 

the values n
iz  in such a way that all of the binding intra-regional constraints are satisfied with 

equality CPSCn∈∀ , n

CPi

n
i

n
i RHSz =∑

∈

α . 

198. These conclusions are stated more formally in the following Proposition: 

                                                      

22 CRA (2004a) do raise the possibility that CSC payments could be traded between market participants. 
They note that: “Given their purpose and specificity, generalised trading of CSCs would not be appropriate, 
but note that bilateral trading is actually quite legitimate. Although different coefficients apply to different 
participants, the CSCs can all be translated back into the RHS units of the underlying constraint, and 
traded between those participants involved without any need for a wider ‘revenue adequacy’ calculation”. 
CRA (2004a), page 59. 



 39 

Proposition 5: Under the CSP/CSC approach: 

(a) Mis-pricing will arise at some connection points unless all constraints which bind with 
positive probability, and which are not included in the CSP/CSC mechanism, are pure 
inter-regional constraints. 

Formally: mis-pricing at a connection point CPi∈  will occur unless 0=∑
∉CSPCn

n
i

nαλ  

for all possible realisations of . nλ  

(b) Even if the CSP/CSC mechanism includes all constraints which bind with positive 
probability, if all constraints are pure inter-regional, it is not the case that a revenue 
neutral, narrowly focused CSP/CSC mechanisms can always be designed so as to achieve 
firm inter-regional settlement residues. 

Formally: It is only possible to construct a revenue neutral, narrowly focussed CSP/CSC 
mechanism if it is possible to find a set of numbers lF  which satisfy 

n
l

Ll

n
l RHSF =∑

∈

β , for all binding pure inter-regional constraints.  

(c) It is not the case that a revenue neutral, narrowly focused CSP/CSC mechanism which is 
designed so as to achieve firm inter-regional settlement residues, will always involve 
granting market participants CSC rights with a positive value. 

(d) Under the CSP/CSC mechanism, achieving a perfect intra-regional hedge is only 
possible if market participants have access to trade in the CSC payments to or from each 
connection point. 

If the market participants only have access to trade in the total CSC payment to or from a 
connection point, achieving a perfect intra-regional hedge will only be possible if it is 
possible to find a set of numbers iz  which satisfy n

i
CPi

n
i RHSz =∑

∈

α , for each binding 

pure intra-regional constraint.  
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Is the Snowy CSP/CSC Trial a complete implementation of the CSP/CSC concept? 

The CSP/CSC mechanism is, of course, already in place in one part of the NEM. For the past 
several months a “trial” of the CSP/CSC concept has been underway in the Snowy region of the 
NEM. This trial is intended to resolve some of the problems that arise when certain constraints 
between Murray and Tumut in the Snowy region are binding. But is the CSP/CSC trial as 
implemented in the Snowy region really a test of the CSP/CSC concept as set out here? 

In fact, the Snowy trial of the CSP/CSC concept is incomplete in key respects. In particular, the 
Snowy CSP/CSC trial does not include payments to or from the VIC-Snowy interconnector. As 
a result, the trial does not achieve the objective of firming up the residues on either the VIC-
Snowy or Snowy-NSW interconnectors. 

The CSP/CSC trial defines the set CSPC to be a set of constraints reflecting the Murray-Tumut 
network limitation. Until recently, these constraints had a form similar to the following: 

13508.0164.079.0 ≤−− →→ TSNVICNSWSN QFF  

In the case of northwards flows, the Snowy CSP/CSC trial involves a payment from Upper and 
Lower Tumut equal to ∑

∈CSPCn
i

n
i

n zαλ  and an equal and offsetting payment from the Snowy-NSW 

interconnector equal to ∑
∈

−
CSPCn

i
n
i

n zαλ . (There is no payment to or from the VIC-Snowy 

interconnector under the original Snowy CSP/CSC proposal). Can we express these payments as 
a form of the CSP/CSC mechanism set out above? 

As we have seen, the CSP/CSC mechanism involves the choice of a set of numbers n
iz  and lF  

such that CSPCn∈∀ , n

i
l

n
l

i

n
i

n
i RHSFz =+∑∑ βα  and the net payment from an individual 

connection point is ∑
∈

−
CSPCn

n
ii

n
i

n zz )(αλ  and the net payment from an interconnector is 

∑
∈

−
CSPCn

ll
n
l

n FF )(βλ . 

Therefore, the allocation to Tumut generation Tz , must satisfy: TTiTT zzz αλαλ =− )( , 

which implies 0=Tz . Similarly, the allocation to VIC-Snowy flows SNVICF → must 

satisfy 0)( =− →→→ SNVICSNVICSNVIC FFβλ , which implies SNVICSNVIC FF →→ = . Finally, the 

allocation to Snowy-NSW flows must satisfy TTNSWSNNSWSNNSWSN zFF αλβλ −=− →→→ )( , 

which implies that n
NSWSNSNVIC

n
SNVIC

n
NSWSN FRHSF →→→→ −= ββ /)( . 

We can see that the current CSP/CSC “trial” in the northerly direction can be seen as an 
implementation of the CSP/CSC mechanism with a zero “entitlement” to Tumut generation 

0=n
Tz  and a non-firm “entitlement” to each interconnector. Specifically, the entitlement on the 

VIC-Snowy interconnector is SNVICSNVIC FF →→ =  and the entitlement on the Snowy-NSW 

interconnector is n
NSWSNSNVIC

n
SNVIC

n
NSWSN FRHSF →→→→ −= ββ /)( . 

Since these “entitlements” depend on the flow on the VIC-Snowy interconnector they are not 
firm. The current “trial” of the CSP/CSC concept therefore doesn’t achieve the objective of 
“firming up” the inter-regional settlement residues. CRA note that “including the VIC-Snowy 
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interconnector in the CSP/CSC arrangement would provide a superior result, particularly in 
terms of dispatch optimality and inter-regional hedging”.23 

We might ask the question: What entitlements would be consistent with firm inter-regional 
hedging? As we saw above, if there are other constraints on the VIC-Snowy and Snowy-NSW 
interconnectors of the form 1900≤→SNVICF  and 3000≤→NSWSNF , then we must choose 

1900=→SNVICF  and 3000=→NSWSNF . Since we must have 

13508.0164.079.0 =−− →→ TSNVICNSWSN zFF , this implies 5.885−=Tz . In other words, 
Tumut generation must accept a very sizeable negative “entitlement” in order to ensure the inter-
regional settlement residues remain firm. 

Another question we can ask is the following: Is it possible to express the Southern Generators’ 
Proposal in the form of a CSP/CSC mechanism? The answer is yes, with the entitlements chosen 
as follows: 0=n

Tz , 0=→SNVICF  and 9.1708/ == →→
n

NSWSN
n

NSWSN RHSF β . Now the 
Snowy-NSW interconnector is “firm” for as long as the Murray-Tumut constraint is the only 
constraint binding. This result was noted in my earlier paper on the implications of the Southern 
Generators’ Proposal. 

 

 

                                                      

23 CRA (2005), page 2. 
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5. Conclusion 

199. The current problems in the NEM – the mis-pricing and the hedging problems – should 
be addressed. A move to full nodal pricing and Financial Transmission Rights is possible but is 
unlikely. That leaves two approaches for resolving these problems: the CSP/CSC mechanism 
proposed by CRA and the constraint-based residues approach set out in this paper. 

200. The CSP/CSC mechanism solves the mis-pricing problem as long as all the potentially 
binding constraints are included within this mechanism. However, it is not always possible to 
design a CSP/CSC mechanism which achieves firm inter-regional hedging without leaving some 
surplus or deficit on the system operator. CRA do not address the problem of achieving intra-
regional hedging under the CSP/CSC mechanism. I show that this is possible, but only if 
participants can actively trade disaggregated CSC payments between themselves. This seems 
unlikely. 

201. In contrast the constraint-based residues approach solves both the mis-pricing problem 
(again, as long as all the potentially binding constraints are included within this mechanism) and 
allows for fully firm inter-regional and intra-regional hedging. The mechanism is revenue neutral 
by design – that is, there is no surplus or deficit left with the system operator. The constraint-
based residues approach is also a natural evolution of the existing market arrangements. 

202. The benefits of the constraint-based residues approach depend on whether or not it is 
feasible to define separate residue funds for all relevant binding constraints. It is not yet clear 
precisely how many separate residue funds will be required. In addition, there remains a question 
as to the formulation of the “right-hand side” of constraint equations. How stable or predictable 
is this value? Can the constraint equations be formulated in a way which makes the right-hand 
side fixed? 

203. In my view, the constraint-based residue approach offers the greatest promise as a 
medium or long-term solution to the mis-pricing and hedging problems in the NEM. 
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