

Session 3:Issues identified as material risks under existing frameworks Public Forum 1 May 2009

Review of Energy Market Frameworks in light of Climate Change Policies

Colin Sausman SENIOR DIRECTOR AUSTRALIAN ENERGY MARKET COMMISSION

Short term management of reliability

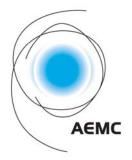
Short term management of reliability - Recap

- CPRS is likely to:
 - Reduce profitability for high emission generators
 - Change operating behaviour
- Inherited tight demand/supply balance projected in some regions
- Tools available to system operator may not be appropriate in the event of an unlikely but credible contingency of a large reserve shortfall
- Existing intervention mechanisms for managing reliability not designed to be used on a frequent basis and/or deliver large amounts of capacity to the market

Option 1 – Short term reserve contracting

- Wider powers than existing RERT for NEMMCO to contract for reserve
- Will allow further provision of reserve in times of forecast capacity shortages
- Could allow more small scale demand response in particular
- Deliberately limited to short term to avoid distorting investment signals
- Challenges are:
 - Still a distortion to the market
 - Longer timeframes imply larger distortion
 - May not provide sufficient reserve capacity

Option 2 – More accurate estimates of amount of DSP


- Participants to provide more specific information on the amount of DSP available
- This enables more accurate assessment by NEMMCO of when to intervene in the market
- Currently there may potentially be too much or not enough intervention
- Challenges are:
 - Information to be disclosed may be commercial in confidence
 - May be difficult to assess firmness of DSP

Option 3 – Encouraging the use of on-site generation

- Streamlining registration and connection processes to facilitate use of small embedded generators currently existing in the market
- Provides additional capacity to reduce reserve shortfalls
- Challenges are:
 - Is this generation effective during times of supply shortfalls?
 - Are there significant volumes available?

Key questions

- Is a reserve contracting option that operates on a longer than nine months lead time (i.e. longer timeframe than the current RERT) required?
- Is the volume of under-utilised small embedded generation capable of active participation in the market significant?
- How material is the information gap between the amount of DSP that NEMMCO is aware of and how much is actually present in the market?

Retail Price Regulation

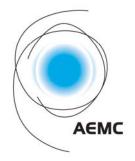
Retail price regulation - Recap

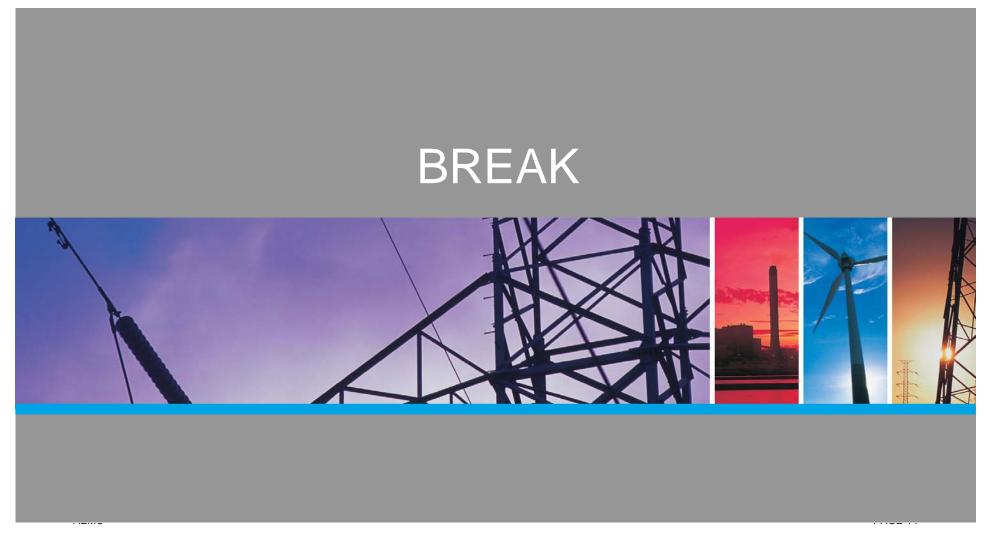
- Where retail price regulation exists, will regulatory frameworks be sufficiently flexible to deal with increased costs and volatility post CPRS and expanded RET?
- Prices which do not allow recovery of efficient costs may limit the development of effective competition
- The ultimate risk is of retailer failure should it not be able to recover costs for a sustained period

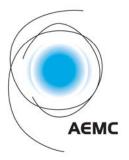
Cost increases

- The CPRS is likely to significantly increase energy costs although the extent of the increase is unclear, especially in the initial years
- Carbon costs are uncertain and may be volatile, partly because of links to overseas markets
- The effect of different levels of carbon cost on wholesale energy costs is also unpredictable
- Retailers have always had to deal with volatility in wholesale costs, but...
- Unlike other drivers of costs, their capacity to efficiently manage or hedge carbon related costs may be limited
- We will continue to explore and assess these issues

Flexibility (1)


- Price setting mechanisms are a matter for jurisdictional policy makers and regulators
- Price paths set by regulators vary in length, approach and process
- Most will allow some review of costs before the CPRS commences but there may be a timing issue
- All involve estimating future wholesale energy costs as one of the key costs borne by a retailer
- Some price setting mechanisms used to date allow for periodic review of costs, predominantly yearly, or review in exceptional circumstances
- But it's not clear that these will provide sufficient flexibility


Flexibility (2)


- Additional retail pricing flexibility appears warranted
- We are developing principles that could guide retail pricing frameworks
- These might include, for example:
 - acknowledging that forecasting future costs will be imprecise
 - allowing for periodic review of costs and adjustment of prices, subject to a materiality threshold
 - recommending a minimum cost review frequency
 - ensuring review mechanisms are symmetrical costs may be over or under estimated
- There is a need to balance pricing flexibility with regulatory certainty
- Ultimately a matter for jurisdictions to determine approach

Key questions

- What strategies are likely to be available for retailers, with price regulated customers, to manage financial exposure to carbon related cost volatility?
- Is a yearly review opportunity for regulatory review of relevant retailer costs frequent enough? Would six monthly review opportunities (subject to a threshold trigger) be too frequent?
- Is there a case for planning explicitly for a CPRS related costs review and adjustment in price caps shortly (say six months) after the commencement of the CPRS?

Efficient provision and utilisation of the transmission network

Efficient provision and utilisation of the transmission network Recap

- Under CPRS & expanded RET, will the incentives (& obligations) under the existing energy market frameworks promote efficient cooptimised decision-making by those who:
 - provide the transmission network (TNSPs)
 - use the transmission network (generators and loads)?
- Materiality of congestion can signal possible inefficiencies
- Therefore, progressing in parallel:
 - Assessing the materiality of problems (analytical & quantitative)
 - Identifying options proportionate to problems

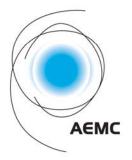
Materiality

- Using the "Framework for assessing transmission policies in light of climate change policies" (D. Biggar) to identify problems & gaps:
 - Short-term generator decisions (e.g. dispatch offers)
 - Longer-term generator decisions (e.g. entry & exit decisions)
 - Transmission operation & investment decisions (e.g. optimising network capability, investment response to congestion)
- Progressing analytical work to "stress test" gaps in current framework
- Undertaking quantitative modelling to investigate the relative economic costs of different models of:
 - Locational entry and exit of generation; and
 - Network investment

Consideration of options

- Investigating a spectrum of options to improve decision-making (*examples*):
 - Short-term: *short-term pricing* & *settlement signals*
 - Longer-term: balance between non-pricing (access to fuel) & pricing (connection costs) signals
 - Transmission: incentives around market benefits projects, like interconnectors
- Developing co-ordinated "packages" of options
 - Identifying design issues for stakeholder consideration
- Assessing "best-fit" package of options proportionate to the materiality of the problems

Transmission charging across regional boundaries (Inter-regional TUOS)


- Current transmission pricing arrangements do not reflect use of neighbouring region's network
- Preferred option is a load export charge
 - Exporting region TNSP charges importing region TNSP for using exporting region's network
- Reasons for load export charge:
 - Improved cost-reflective price signal for use of network
 - Consistent with existing arrangements, readily implemented
 - Proportionate to problem
 - Supported by majority of stakeholders
- Outstanding implementation questions consulting with TNSPs

Focus for the 2nd Interim Report

- Identification of the materiality of the problem do stakeholders agree that we're in this "state of the world"?
- Set out a narrowed down "package of options" designed to address the materiality of the problem
- Propose a work program for assessing and developing the options further (including implementation considerations)
 - stakeholder engagement key: workshops, Advisory Committee and Sub-Group
- Present the specific details and reasoning for the load export charge

Key questions

- How do the CPRS and expanded RET affect the balance between pricing signals (e.g. transmission connection costs) and non-pricing signals (e.g. access to fuel) for generation location decisions?
- What are the more important drivers for potential inefficient costs as a result of the CPRS and expanded RET? Operational decisions or investment decisions? Decision-making by TNSPs or by generators?
- What are the key issues to consider when assessing options for change?
- Would there be any issues with commencing the new inter-regional charging arrangements (load export charge) from 1 July 2011?

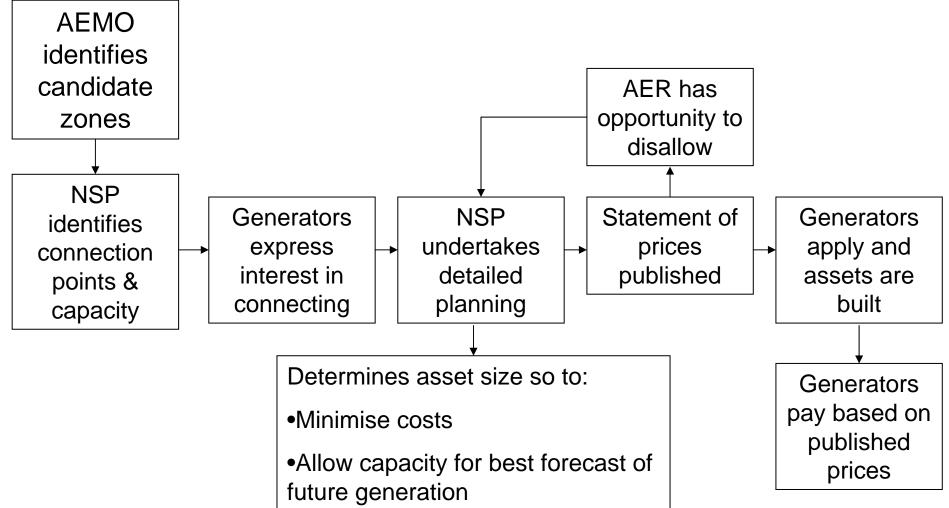
Connecting remote generation

Connecting remote generation Recap

- Expanded RET is likely to stimulate investment in new generation capacity, which may be:
 - clustered in similar geographical areas; and
 - likely to be remote from grid
- Existing framework based on bilateral negotiation, which is not likely to facilitate coordination of applications and allow consideration of future connections and efficient sizing
- Likely to result in increases costs and reveal timing issues

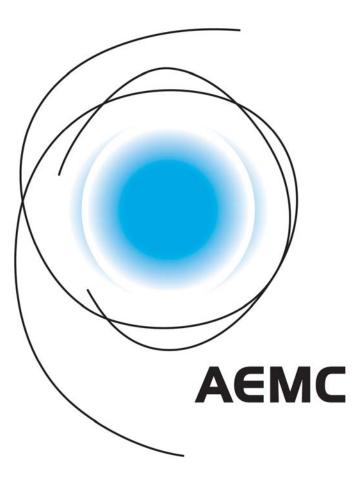
Preferred option

Recommended option – a network led optimal sizing option (Option 2)


- Network planners (AEMO & NSPs) identify candidate locations and connection assets
 - Allows for co-ordination of existing generation proponents
 - Assets planned to accommodate future generation connection
- A new class of connection asset introduced
 - Network Extensions for Remote Generation (NERG)
 - Mirrors principles for existing connection services
- Customers underwrite any additional capacity for future use
 - But are only required to pay if expected generation doesn't materialise

A network led optimal sizing option Benefits

A number of benefits can be realised by implementing this option:


- Allows for the benefits of future scale economies to be realised
 - Customers will benefit through lower electricity costs
- Seeks to maintain existing separation between connection assets (negotiating framework) and shared network (prescribed services)
- Maintains existing signals for generation investment i.e. generators pay for connection assets they use
- Leaves decision making to those with the best information

Network Extensions for Remote Generation (NERG) Process

Key questions

- Is it necessary to place any additional obligations or financial incentives on network businesses to build NERGs?
- Which of the proposed alternatives best manages customers' exposure to risk?
- Will the proposed model be required for distribution and, if so, is it suitable?

