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Dr John Tamblyn 
Chairman 
Australian Energy Market Commission  
PO Box H166  
AUSTRALIA SQUARE   NSW   1215 
 
Dear Dr Tamblyn, 
 

Submission on Draft Rule Determination and Second Draft Rule 
 
I refer to your Draft Rule Determination and second Draft National Electricity Amendment 
(Economic Regulation of Transmission Services) Rule 2006. 
 
Market risk premium 
I note that if the Draft Rule is adopted the market risk premium (MRP) will be deemed to be 6 
per cent (following Section 6A.6.2 of the Draft Rule). 
 
The true value of the MRP is an uncertain quantity but the evidence suggests that it has fallen in 
recent decades.  The analysis in the attached report, The Market Risk Premium for Australian 
Regulatory Decisions, which has been prepared for the Advocacy Panel, concludes that the 
evidence from historic excess returns suggests that the most likely value of the 1-year MRP is in 
the range 5 to 6 per cent, but with considerable uncertainty still attached.  Among the issues 
raised in the report is that reductions in securities transaction costs have had a downward 
influence on the MRP of the order of 1 per cent since the early 1980s. 
 
Thus the analysis in the report does not argue strongly against your proposed parameter value 
but suggests that the contemporary MRP value is more likely to be below 6 per cent than above 
it. 
 
Equity beta 
I note that if the Draft Rule is adopted the equity beta will be deemed to be 1.0 (following 
Section 6A.6.2 of the Draft Rule). 
 
In the Draft Rule Determination you say that: 

The equity beta is the most difficult parameter to estimate, as it cannot be measured accurately from 
empirical data that is available. The Commission understands that the value of ‘one’ that was adopted 
in the SRP represents a compromise between the difficulties of estimation and the consequent need to 
err on the side of caution. Regulators have applied equity betas above and below ‘one’, but ‘one’ has 
come to represent the most widely accepted practice.  
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In my view you have not given due recognition to the accumulation of knowledge since the 
SRP.  In the SRP it was said that: 

The code clearly provides for consideration of market data, and the emerging data suggests the 
appropriate equity beta for TNSPs may be less than 1. However current statistical methods for 
estimating the equity beta from market data tend to produce varying confidence interval (and sample 
average) estimates. The ACCC also notes that the time period of the market data is not long enough 
to satisfy the ACCC that market derived equity betas would not systematically under-compensate the 
TNSPs. That is, the current decline in the measures of market derived equity betas may reflect a short 
term deviation from normal trend. In saying this, the ACCC will continue to use market evidence to 
check the reasonableness of a TNSP’s equity beta. 

 
A footnote to that paragraph noted that: 

The estimated re-levered equity betas from a sample of comparable Australian energy firms have 
fallen from around 1 in 2000 to around 0.3 in 2003. (see ESCOSA, Electricity Distribution Price 
Review: Return on Assets-Preliminary Views, January 2004, p.56). This analysis is consistent with 
the ACCC’s estimates of market derived equity betas shown in recent regulatory decisions. 

 
A submission on your first Draft Rule from the Government of South Australia said that “an 
equity beta for Australian utilities of substantially lower than 1 (possibly as low as 0.5) may be 
reasonable”.  That submission also drew to your attention work by Professor Lally advising that 
an equity beta of no more than 0.8 was justified.  That advice was provided in May 2005 as part 
of a submission to an appeal over an Essential Services Commission of South Australia 
(ESCOSA) determination which set an equity beta of 0.8 for the South Australian electricity 
distribution assets.  Submissions were also received from Professors Gray and Officer arguing 
for a beta of 1.0.  In its final decision ESCOSA set a beta of 0.9.  The decision did not indicate 
any retreat from the view that a beta of 0.8 was to be preferred on the evidence, but instead was 
explained by ESCOSA on the ground that its original decision “did not give adequate weight to 
the requirement of clause 6.10.3(e)(6) of the NEC to provide reasonable certainty and 
consistency over time in the outcomes of regulatory processes”.  Thus the view put to you by 
the South Australian Government draws on an extensive and more recent review process than 
the SRP, yet in your Draft Determination you reach your conclusions on equity beta without 
addressing the South Australian Government submission or its foundations, while carrying out 
no substantive analysis of your own in the Draft Determination.  As your decision will 
effectively lock in a contentious beta estimate until 2011 it is highly desirable to take on board 
now what has been learned since the SRP was prepared. 
 
I would be happy to discuss these matters further at your convenience. 
 
 
Yours sincerely, 
 
 
 
Jim Hancock 
Deputy Director 
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Executive Summary

This is the report of an investigation into what value of the market risk premium (MRP) 
should be used to set regulated rates of return for Australian electricity utilities.

Of course the MRP is a generic parameter, so that much of what is said herein is also relevant 
for setting regulatory rates of return for other long-lived infrastructure.

The MRP π is defined as

iRE M −−= 1)(π

where )( MRE is the expected gross return on the market and i is the return on a riskfree asset 
(ie. a pure interest rate).  Although time subscripts have not been included, the MRP exists at 
a point it time.  There is nothing in its construction that requires that it be unchanging through 
time.  However, constancy has often been assumed, particularly in estimation exercises.

In Australian electricity regulatory decisions the most common assumption regarding the 
value of the MRP is 6 per cent.  However, there is a divergence of views on the 
appropriateness of this judgment.  On the one hand it is argued that a long series of historical 
returns shows a 1-year average MRP of over 7 per cent, and that the use of even a 6 per cent 
MRP has scant statistical support.  On the other hand, it is argued that plausible views as to 
growth prospects for dividends, and surveys of financial market practitioners’ expectations, 
both suggest an MRP below 6 per cent.

This study is primarily concerned with the examination of historic excess returns.  Under 
certain assumptions the average of historic excess returns can be used to estimate the market 
risk premium.  The key finding of this report is that the best estimate of the contemporary 
MRP can be made by considering monthly excess returns over the last 30 years.  After 
allowing for known biases in this data, the central estimate of the MRP is in the range 5 to 6 
per cent.  This finding rests on a rejection of the view that the MRP has been stable over the 
last 122 years.

In this study three series of historic excess returns are considered − a long series of 122 annual 
return annual observations from Professor Officer, a 35 year series of annual observations 
from Ibbotson Associates, and a 30 year series comprising 372 monthly observations from the 
Australian Graduate School of Management.  The Officer series and the AGSM series are of 
most interest and have competing claims to be the better estimator.  The Officer dataset with 
122 observations has the largest available series of non-overlapping 1-year excess returns.  
However, the AGSM data has 361 overlapping 12-month excess returns and also has 372 
monthly excess return observations which can be used to estimate mean 12-month excess 
returns with the use of another moment condition.  In each case an adjustment has been made 
to the raw data to incorporate the value of franking credits into the excess return series.  The 
series have been boosted by 0.6 per cent for the years since the introduction of dividend 
imputation.

If one believes that the MRP changes over time, then there are obvious attractions in giving 
greater weight to more recent data.  However, an MRP estimate based on just 31 annual 
observations (which is the span of the AGSM data to the end of 2004) forms a relatively small 
sample and therefore is quite imprecise.
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A key finding in this report is that it is possible to make the estimate for the last 31 years with 
much greater precision than has been done in the past.  It is possible, using monthly data for 
the last 31 years, to estimate average 1-year returns with a 95 per cent confidence interval 
spanning about 4½ percentage points.  Estimates made using just annual observations, which 
is the standard past practice, produce a confidence interval with width of about 16 percentage 
points when calculated on just 30 years data.  The reason for the difference is that there are 
360 monthly observations available over 30 years but just 30 non-overlapping 12-month 
observations.

It is possible to construct a weighted estimator comprising an estimator based on 92 years of 
annual data and an estimator based on 30 years of monthly data.  This weighted estimate of 
the 1-year MRP is 6.4 per cent.  It is very precise, with a standard error of just 0.9 percentage 
points.  Its 95 per cent confidence interval spans just 3½ percentage points.

However, the use of such a measure rests on the idea that the distribution of excess returns has 
been stable over time.  It has previously been found by Gray (2001) that there is not “strong” 
evidence of a structural change in average excess returns.  The problem is, as has been 
pointed out by the Victorian Essential Services Commission, that these tests lack “power”.  
Monte Carlo simulations in this report confirm that view:  in the simulation performed, 
conventional t-tests would detect a 5 per cent reduction in the MRP only 40 per cent of the 
time (ie. they wrongly allow the “no change” hypothesis to stand 60 per cent of the time).  Yet 
a change in the MRP of this order would be of massive economic significance.  The 
conclusion is that the fact that conventional t-tests do not detect a change in mean excess 
returns cannot be regarded as a strong rebuttal that such a change has occurred.

Extensive tests are conducted over the question of whether the long series can be regarded as 
stable over its 122 years.  These tests seek to allow for autocorrelation in returns, which 
complicates the analysis.  Tests for structural breaks were then carried out by incorporating 
dummy variables in an ARMA model.  Breaks were considered for each year from 1960 to 
1985.  The non-parametric tests rejected the “no break” hypothesis at a 5 per cent significance 
level in most cases and in every case at a 7 per cent significance level.

On the basis of these considerations the hypothesis of a constant MRP over the last 122 years 
is difficult to accept.  Of course the hypothesis does not in any case have particularly strong 
support in any economic theory;  rather, it is a convenient assumption for statistical inference.  
The data appear to be inconsistent with it.

Various smoothing techniques were applied to the data to produce trend estimates of the MRP 
which allow for it to change over time.  One of these was the Hodrick-Prescott filter, which is 
commonly used to filter high frequency noise out of macroeconomic time series.  The 
smoothed series is shown in Figure E.1 below, along with the simple average.  It is readily 
apparent that filtering the data in this way suggests that the MRP has dipped substantially, and 
has recently been at all time lows around 6 per cent.  (This study uses data only until the end 
of 2004;  had the data for 2005 been used it would show a stronger rise towards the end of the 
period).

The predictive power of a range of filters was measured by considering the prediction 
accuracy of rolling predictions over a 60 year period. The best prediction performance was 
achieved by a lagged value of the Hodrick-Prescott filter.  However, the simple average also 
performed relatively well.
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The author’s view is that the assumption that the mean 1-year excess return has been stable 
over the last 122 years is very tenuous.  This tends to rule against the very long term average 
as an estimator.  Now that higher-precision estimates are available for the past 30 years, it 
seems reasonable to put more weight on that period.

Figure E.1
Average excess returns and Hodrick-Prescott trend estimate of excess returns
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Some recent studies have thrown new light on the interpretation of excess return data by 
taking into account taxation effects and the effects of transaction costs and, related to 
transaction costs, illiquidity in investors’ portfolios.  In this view, the market risk premium 
needs to be seen as more than a pure risk-compensation element of equity returns.  It will also 
include components relating to the relative generosity of the tax treatment of equities versus 
bonds, and components relating to transaction costs and illiquidity in asset markets.

With this distinction in mind it may be sensible to differentiate two concepts that have been 
treated as synonymous in much of the Australian discussion.  The equity premium, which is 
the expected excess return on equities, will include a pure risk premium, a tax-compensation 
element and a transactions costs/liquidity premium.  With these three components in mind, it 
becomes apparent that what is known as the “market risk premium” in Australia is not just a 
pure risk premium but also includes these tax and transaction cost/liquidity elements.

A further implication of this breakdown is changes in taxation and transaction costs and the 
liquidity characteristics of markets have the potential to drive changes in the expected value 
of excess returns (i.e. the market risk premium).

To date, there has been only limited empirical research on these issues.

Some “experimental” estimates are presented here for tax effects. They indicate some upward 
pressure on excess returns over the last 30 years, reflecting that lower inflation creates a much 
less tax-disadvantaged environment for bonds and that capital gains tax has been introduced.  
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These influences are offset somewhat by the introduction of dividend imputation which has 
benefited domestic equity investors.  However, it has not been possible here to make good 
allowance for changes in the vehicles via which investors enter bond and equity markets, and 
this may have important implications for relative tax rates.  Therefore the estimates should be 
seen very much as a tentative step towards understanding the impact of changing taxation 
arrangements on excess returns.

Rough estimates have also been made of transaction costs and liquidity premium effects 
drawing on parameters from the literature.  The price of equity market transactions has 
undoubtedly fallen since the early 1980s, but at the same time turnover has risen, with the 
result that transaction costs are not necessarily much lower.  However, lower transaction 
prices mean that markets are more liquid and that it is much less costly to optimise portfolio 
structure.  When one factors portfolio adjustment costs into equity return calculations, there 
are grounds to include some “liquidity premium” as a component of the total equity premium.  
It is estimated in this paper, using parameters from other studies and market data, that there 
has been a reduction in this liquidity premium of at least 1 per cent in Australia since the early 
1980s.  And while the data do not exist to make comparable estimates in the more distant 
past, there is a possibility that the liquidity premium earlier in the 20th century was even 
greater than in the 1980s − which offers some explanation for the apparent fall in excess 
returns since  the 1950s.

The final section of the report considers the potential for biases in excess returns.  It is 
concluded that there may have been a small upward bias in excess returns as a result of a 
small and unanticipated downward trend in gross real rates of return.  This trend reflects falls 
in real interest rates and the (il)liquidity premium for equities, offset to some extent by less 
favourable tax treatment.  The combination of these factors may have lent an upward bias to 
the excess return realisations of the order of ½ per cent − obviously a small amount and 
subject to some considerable uncertainty.  

There is still considerable uncertainty about the true value of market risk premium that should 
be entered into regulatory pricing models.  This report demonstrates that the use of a very 
long time series of historic data probably confounds the analysis by mixing together periods 
in which the market risk premium was different.  Although the statistical evidence is not 
overwhelming, it is suggestive of an average around 6 per cent over the last 30 years or so.  
Trends in transaction costs will have given downward impetus to the MRP over that period, 
although it is possible that tax effects have had some offsetting influence.  Taking all these 
factors into account, the most likely value of the MRP is in the range 5 to 6 per cent, but with 
significant uncertainty still attached.
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1. Introduction
1.1 Structure of this report
In Australian electricity regulatory decisions the most common assumption regarding the 
value of the market risk premium (MRP) is 6 per cent.  However, there is a divergence of 
views on the appropriateness of this judgment.  On the one hand it is argued that a long series 
of historical excess returns shows a 1-year average MRP of over 7 per cent, and that the use 
of even a 6 per cent MRP has scant statistical support.  On the other hand, it is argued that 
plausible views as to growth prospects for dividends, and surveys of financial market 
practitioners’ expectations, both suggest an MRP below 6 per cent.

This study is primarily concerned with the re-examination of historic excess returns.  Section 
1.2 of this introduction briefly sets out the connection between the MRP and regulatory cost 
of capital and considers how the MRP might be estimated from historical data.

An important question is whether or not the MRP can be regarded as a stable quantity through 
time.  If it can, then estimation of the MRP can be carried out with the largest sample 
possible, making use of indicators of the MRP from many years ago.  On the other hand, if 
the MRP changes through time, then it will be desirable to discount or even ignore data from 
many years ago.

Section 2 of this report considers the historic excess return data that is available for Australia.  
Although three series are considered, two warrant the most attention:  the Officer series which 
provides 122 annual observations over the long period from 1883 to 2004, and the AGSM 
series which provides 360 monthly observations spanning the period from January 1974 to 
December 2003.  Estimates of mean excess returns are made for different periods, including 
an efficient weighted estimator which estimates a 122 year mean with greater precision than 
the methods used in the past.  The important issue of bias is also explored.

Section 3 turns to the critical foundational assumption for employing long data series to 
estimate the MRP:  the assumption that the MRP is stable over long periods of time.  Standard
t-tests have in the past been unable to reject the hypothesis of “constant MRP”, but it has been 
recognised that the tests may lack power.  In Section 3 the issue of power issues is explored 
with simulations.  The power of t-tests is found to be very weak.  To further investigate the 
question of structural stability, the stability of the variance of excess returns is explored, and it 
is found that the distribution has not been stable in this respect.  The stability of mean excess 
returns is then further investigated with allowance for autocorrelation.  Autocorrelation can 
undermine the power of conventional statistical tests, and by making allowance for it more 
efficient tests may be carried out.  After autocorrelation is allowed for, the weight of evidence
against a constant mean is reinforced.

Although there is evidence for a structural break in the MRP, the values of it through time are 
unknown.  Section 4 applies alternative smoothing techniques to isolate an underlying trend in 
the equity premium.  The alternative techniques are compared with each other by assessing 
their out-of-sample prediction performance.

Section 5 raises two important issues which have hitherto had limited attention in analysis of 
the excess returns − taxes on the investor and transaction costs and liquidity premiums.  It is 
common to ignore these items and to equate excess returns with a pure market risk premium.  
But in fact they can be expected to combine with the pure market risk premium to generate 
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the investor’s expected excess return.  It follows that as taxes at the investor level and 
transactions costs and liquidity premiums change, then the expected value of excess returns is 
likely to change too.

Section 6 considers the potential for bias in excess return series and its possible influence on 
the more recent Australian data.

Appendices cover the use of lognormal estimators of the mean, the properties of Officer’s 
long data series, and the construction of weighted estimators of maximal efficiency.

1.2 Conceptual foundations
Relevance of efficient costs
It is common in Australia and elsewhere for governments to regulate the prices charged by 
utilities.  The rationale for price regulation is to prevent those utilities from exploiting their 
monopoly positions to set prices in excess of what is required for the recovery of reasonable 
costs.  Such regulation is widespread in industries such as electricity, gas, 
telecommunications, water and transport, particularly in respect of network infrastructure.

To regulate in this way, regulators need to make assessments of what efficient costs actually 
are.  One of the particular challenges that arises is the need to measure an efficient cost of 
capital in respect of capital investments.

Definition of the cost of capital
Capital is provided by investors.  In its simplest form investment involves an up-front 
payment by an investor in return for which she receive the rights to a future income stream.  
The amount of the future income stream is usually uncertain (although there are some 
exceptions such as certain government securities).

Define the simple gross return on an investment, R, in terms of the investment I and the 
payoff P:

I
PR = (1.1)

The simple net return then is 1−R .

In the case where an investment’s returns are uncertain, there is a variety of outcomes which 
could eventually occur, with differing returns attached to each.  However, if the investor can 
form a view about the range of possible outcomes and their likelihood, then she can form an 
expectation over the set of possible returns.  This is just the probability-weighted average of 
the return under each possible outcome.  It is:

∑ ==Ε
j

jRjoutcomeprobR )()( (1.2)

Where )( joutcomeprob = is the probability that outcome j occurs and the summation is over 
all the possible outcomes.
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)(RΕ is known as the “ex ante” gross rate of return and is also a measure of the ex ante 
“price” paid for capital and as such is a measure of the cost of capital.

The expectation in Equation 1.2 can also be expressed in terms of the payoff term in Equation 
1.1.  Summing over each of the possible payoffs Pj : 

I

Pjoutcomeprob

I
P

joutcomeprobR

j
j

j

j

∑

∑

=

=

==Ε

)(

)()(

(1.3)

For any given distribution of payoffs, an increase in the price of the investment, I, implies a 
lower expected return and thus a lower cost of capital, and conversely a decrease in I implies 
a higher expected return and a higher cost of capital.

Each of the possible return outcomes jR can be expressed as the sum of an ex ante interest 
rate i ,  which is common to all the possible return outcomes and therefore is not subscripted, 
and an “excess return” outcome jπ

jj iR π++= 1 (1.4)

Taking expectations across the terms of Equation 1.3, and noting that the expectation of 
something that is known with certainty is just itself, we get

)(1)( πEiRE ++= (1.5)

Thus the expected return is equal to 1 plus the interest rate plus the expected excess return.  

The cost of capital for the “market”
It is easy to apply these simple relations to the case where the investment under consideration 
is an investment in the whole market.  Letting jMR denote the return on the market under 
outcome j and jMπ the excess return on the market under outcome j, substitution into 
Equation 1.4 gives

)(1)( MM EiRE π++= (1.6)

The return on the market MR is not known with certainty and as such it has a risk attached to 
it.  The quantity i+1 is known with certainty and can thus be regarded as a riskfree element of 
the expected return.  The component )( ME π is risky.  It is called the “market risk premium” 
(MRP).

As was noted above, for a given expectation over future cashflows, the expected return on the 
market and the market risk premium depend on the price of an investment.  The same is true 
of the market.  If the demand for investments in the market exceeds the supply at some 
particular value of the MRP, then the price of the market is bid up and the MRP is reduced; 
the converse is true if the supply exceeds the demand.
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A framework for estimating the MRP
The MRP is defined as the expected value of excess returns.  The MRP at any point in time is 
therefore a parameter pertaining to an unobservable statistical distribution.  The only evidence 
that is seen of the MRP is a single ex post realisation, and it is not possible on the basis of this 
to infer much about the underlying distribution and its parameters.

Typically the way around this difficulty is to assume that a time series of historic excess 
returns represents repeated draws from a stable distribution.  If that assumption can be 
maintained, then an estimate of the MRP and, just as important, the confidence intervals 
pertaining to an estimate, can be estimated from the sample of excess returns.

The simplest estimator of the mean 1-period return is the arithmetic average of a sample of 1-
period returns.  An arithmetic average is an unbiased estimator of the mean.  As such the 
arithmetic mean is an obvious starting point in the search for an estimator of 1-period returns.  
The precision of the estimate obtained will depend on the sample size used for estimation.

The geometric mean, defined as the Tth root of a series of T returns, is not an unbiased 
estimator of the 1-period expected return.  This is simply a statistical truism.

However, it can be shown that if returns are drawn from a lognormal distribution, the 
expected value of returns is given by

)2/( 2
)( σµ+= eRE (1.7)

where µ and 2σ are respectively the mean and variance of Rln .  It can be shown that the 
quantity µe is the geometric average of the series of returns.  This is an alternative estimator 
of the expected value of returns.  It can then be used to estimate the expected value of the 
MRP by deducting interest rates.  The disadvantages of this estimator (over and above its 
relative obscurity!) are that it relies on normality and that it does not have the unbiasedness 
property of a simple arithmetic average.  Its great advantage is that it enables the generation of 
multi-period expected returns and associated statistical confidence intervals from 1-period 
expected returns, in a way that an arithmetic average of 1-period returns cannot.  For instance, 
as will be seen, it can be used to generate estimates of the 1-year MRP from monthly return 
data.  Moreover, multiperiod estimates can be made which include exact adjustments for the 
distorting effects of autocorrelation.  These issues have been explored in work by Blume 
(1974), Cooper (1996) and Jacquier, Kane and Marcus (2003).  There is further discussion of 
them in Appendix A.  There are also more accessible discussions in Wright, Mason and Miles 
(2003) and Lally (2004).

More complicated alternatives relax the assumption of constancy in the underlying 
distribution of excess returns, and instead allow it to evolve over time in a deterministic way.  
Conditional expectations such as the mean, the variance and covariances may then vary over 
time.   The conditioning could be on exogenous variables or on the past history of the excess 
returns themselves.  The attraction of such estimators is that allowing for a time-varying MRP 
may allow both better prediction at a point in time and lower estimation errors with 
consequently greater precision of estimates.

Rather than seeking to further explore these ideas here, without direct context, they are 
discussed further when they arise in the report.



The Market Risk Premium for Australian Regulatory Decisions Page 5

The SA Centre for Economic Studies July 2006

2. Estimating the Market Risk Premium from Long Historical Data 
Assuming Stability of Excess Return Distributions

2.1 Description of Datasets
In this section three historic excess returns series are analysed to draw out evidence on the 
market risk premium.  In each case the excess return is calculated as the difference between 
the equity return over a period and the 10-year bond rate at the beginning of the period.  The 
three series are:

• Professor Officer’s long series of Australian excess returns, comprising 122 annual 
observations from 1883 to 2004;

• a series based primarily on Ibbotson Associates (2004) series of Australian excess 
returns, comprising 35 annual observations from 1970 to 2004; and

• a series based on the Australian Graduate School of Management’s Share Price and 
Price Relativities Data File, comprising 372 monthly excess return observations 
from January 1974 to December 2004.

Each of these series is based on broad-based Australian equity accumulation indexes which 
capture returns in the form of dividends paid and capital gains.  Essential Services 
Commission of Victoria (2005) points out that allowance should also be made for the value of 
franking credits which have been available since the middle of 1987 and suggests that a figure 
of 0.6 per cent per annum is appropriate.  This figure is similar to Hathaway’s (2005) estimate 
of 0.53 points per annum.  The ESC suggestion has been adopted and the excess return data 
from these series has been increased by a value of 0.6 per cent per annum from July 1987 
onward.

Professor Officer kindly provided the data which he used to produce summary statistics 
published in Victorian Essential Services Commission (2002b); in turn they on build on his 
1989 study of long term Australian equity returns.  The data that he provided covered the 
period 1883 to 2000, and are the longest available consistent series of broad Australian equity 
market returns.  For this report, observations for the years 2001 to 2004 were constructed 
from Australian Stock Exchange and Reserve Bank of Australia data and appended to 
Officer’s data.  This gives a series of 122 annual excess return observations for the years 1883 
to 2004.  They are plotted in Figure 2.1, and Appendix B provides more information about the 
dataset.

Ibbotson Associates data is based on MSCI indices.  The “long horizon” series has been used, 
which uses a bond rate as the riskfree interest rate proxy.  The Ibbotson data cover the period 
to the end of 2003, and a 2004 observation has been added, calculated as the difference 
between the 10-year bond rate and the ASX 200 accumulation index for 2004. 

The AGSM data covers the period 1974 to 2003, and it has been supplemented by including 
observations for each of the months of 2004, calculated as the difference between the 10-year 
bond rate and the ASX 200 accumulation index.  The AGSM data has the greatest breadth of 
coverage of companies.  This is an advantage because the greater the breadth of coverage the 
more likely a measure is to correlate with the universe of available investment opportunities.  
As Lally (1995) shows, indexes which incompletely cover the market portfolio may bias 
estimates of cost of capital.  The fact that the AGSM series is available monthly means that it 
also provides a large number of relatively recent observations;  with 360 observations it is the 
largest sample that we have.  Annual equity returns were compiled from the monthly data by 
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compounding monthly relatives.  To get the annual excess return, the beginning of period 
bond rate was then subtracted.  This procedure yielded 361 overlapping and 31 non-
overlapping annual excess return observations.

Figure 2.1
Excess Returns from 1883 to 2004
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2.3 Arithmetic average estimators of mean 1-year excess returns
Many equities are common to each of these indexes, and that commonality is even more 
pronounced in value-weighted terms.  Therefore it is to be expected that the indexes will 
produce similar results when considered over common periods, and the data in Table 2.1 bear 
this out.  Take the period 1974 to 2004, for instance.  The Officer dataset had an average 
excess return of 6.8 per cent, which compares with 6.4 per cent for Ibbotson Associates.  The 
average of AGSM excess returns for the calendar years 1974 to 2004 was 6.7 per cent.  The 
average of AGSM 12-month excess returns for the 361 months December 1974 to December 
2004 was 6.6 per cent (but this involves overlapping observations).

The correlation coefficients between each series are either 0.99 or 0.98, which are very high.  
This is not surprising; many stocks are common across the datasets.

Table 2.1 also includes standard errors for the average excess returns.  Over the period 1974 
to 2004, for the 3 non-overlapping cases, the standard errors are 4.2, which means that the 
associated 95-per cent confidence intervals for mean excess returns range from about –2 per 
cent to 15 per cent − a 17 per cent range, which is very wide.1

  
1 This reckoning is based on the 2 standard errors rule for a 95-per cent confidence interval.
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Table 2.1
Comparison of excess returns from Officer, Ibbotson Associates and AGSM datasets

Officer data
Ibbotson Associates 

data
AGSM data

non-overlapping
AGSM data
overlapping

1883 to 2004:
Average 7.4 n.a. n.a. n.a.
Std Dev of Observations 16.9 n.a. n.a. n.a.
Std Error of Average 1.5 n.a. n.a. n.a.

1970 to 2004:
Average 4.3 3.9 n.a. n.a.
Std Dev of Observations 23.6 23.4 n.a. n.a.
Std Error of Average 4.0 4.0 n.a. n.a.

Corr coeffs
vs Officer - 0.99 n.a. n.a.
Std Dev

1974 to 2004:
Average 6.8 6.4 6.7 6.6
Std Dev of Observations 23.0 23.0 23.1 21.4

Std Error of Average 4.2 4.2 4.2 1.1(1)

3.1(2)

Corr coeffs n.a.
vs Officer - 0.99 0.99 n.a.
vs Ibbotson - - 0.98 n.a.

(1) Conventional calculation.
(2) Newey-West standard error.

The overlapping AGSM data is interesting because, by virtue of the fact that it uses monthly 
data, it has many more observations than the other datasets.  Moreover, they are relatively 
recent.  The conventional standard errors have been calculated at 1.2 percentage points.  
However, the overlaps introduce autocorrelation to the data, which means that the 
conventional standard errors are not valid.  Therefore Newey-West standard errors, which are 
asymptotically valid, have been presented too.  They suggest a 95-per cent confidence interval 
ranging from around zero to about 13 per cent.  Obviously this is still a very wide range.

2.4 Lognormal estimator of mean 1-year excess returns
While the Newey-West standard errors make allowance for autocorrelation (and 
heteroskedasticity) of unknown form in the series of 12-month excess returns, it is possible 
that an approach that makes explicit allowance for that autocorrelation would do better.  We 
know that the overlapping nature of the observations builds in autocorrelation, and direct 
analysis of the monthly returns would avoid that problem.

Unfortunately the relation between monthly and 12-monthly excess returns is messy.  More 
straightforward is the relation between a 12-month return and the 12 single monthly returns.  
It is exactly

∏
=

=
12

1

)12(
t

tRR (2.1)
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where )12(R is a 12-month return and the tR are 12 monthly returns that it is made up from.

Let ti and tγ denote interest and excess return elements which combine multiplicatively to 
give the return in period t

)1)(1( ttt iR γ++= (2.2)

Then Equation 2.1 can be rearranged to get
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where  )12(i and )12(γ are multiplicative interest and risk premium elements making up the 12-
month return.

In contrast, the “excess return” over 12 months, denoted )12(π is given by

)12()12()12( iR −=π (2.4)

and because this relationship is additive it is not possible to express )12(π as a product (or for 
that matter a sum) of monthly excess returns tπ .  For this reason it is more fruitful to build an 
estimate of the 12-month average excess return from multiplicative monthly risk premia.

Equation 2.3 lends itself to a logarithmic decomposition
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Turn now to the case where ti and tγ are stochastic.  If we assume that ti+1 and tγ+1 are 
lognormally distributed and independent of each other and that their logs have respective 
means iµ and γµ and variances 2

iσ and 2
γσ then tR will also be stochastic with a lognormal 

distribution, and its log will have mean γµµµ += iR and variance 222
γσσσ += iR .

Furthermore, )12(R is also stochastic.  So long as there is no autocorrelation in its 
constituents, then it too will be lognormally distributed and its log will have a mean
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If the log of a lognormally distributed variable has mean µ and variance σ , it can be shown 
that the mean of the variable (which is by definition its expected value) is

)2/exp()( 2σµ +=RE (2.6)

It can be shown that the expected value of )12(R is then

)2/exp())12(( 2
)12()12( RRRE σµ += (2.6)

By taking estimates of parameters, the expected value of )12(R and its confidence intervals 
can be obtained.

In making such a calculation it is convenient to recognise that the risk free interest rate for 
any 12 month period can be observed at the outset with virtual certainty. For a given interest 
rate then, 2

iσ is zero and 22
)12( 12 γσσ =R .  But the estimate of the 12-month expected return, and 

ultimately the 12-month market risk premium, will depend on the interest rate at which the 
expectations are evaluated.  An obvious candidate is the average interest rate available over 
the 372 months for which excess returns observations are taken.

This estimator is described as a “lognormal estimator from monthly returns”.  The calculation 
is shown in Table 2.2.  The data are presented in decimal form.  Converting to percentages, 
the estimate of the 12-month expected excess return is 6.4 per cent.  The lower boundary of 
the 95 per cent confidence interval is 4.2 per cent and the upper bound is 8.6 per cent.

Thus, by making use of the monthly return data from AGSM with a lognormal estimator, we 
get a narrower error bound on the estimate of the MRP than is possible with the long Officer 
series.  In each case we estimate mean 12-month excess returns.  The “2 standard errors” 
range for the “monthly data estimator” is 4.5 percentage points.  The 2 standard error range 
for the Officer data is 6.2 percentage points.

It is interesting to note that when the lognormal estimator is applied to the Officer data series, 
it estimates the mean for that series at 7.37 per cent which is very close to the arithmetic 
average estimate of 7.29 per cent.  The lognormal estimator behaves perfectly sensibly in that 
case.

Are there any drawbacks to the lognormal estimator?  Potential limitations are:

• It is an asymptotic estimator.  While it is unbiased asymptotically, it may be biased in 
finite samples.   However, the biases get smaller as samples get larger.  It is notable 
that the value of the lognormal estimator of the 12-month excess return, 6.4 per cent, 
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is close to the values of two alternative unbiased estimates − 6.7 per cent for the non-
overlapping average and 6.6 per cent for the overlapping average calculated out of 
the AGSM dataset.

• It does rely on there being no autocorrelation in the monthly (multiplicative) excess 
returns.  The only hint of autocorrelation in the correlogram and Breusch-Godfrey 
tests was at 1 lag, at a significance level of around 15 per cent.  A variance ratio test 
at 12 months found no significant evidence of autocorrelation.  (Appendix C presents 
details of an autocorrelation adjustment, but it has not been carried out here.)

• The monthly excess log returns are not normal (the Jarque-Bera test strongly rejects 
this), which violates an underlying assumption with the lognormal estimator.  The 
consequences of this are unknown.

• It is assumed that there is no structural discontinuity in the data.  Such an assumption 
is common to all the procedures which involve averaging of historic excess returns, 
such as the widely used averages of the long Officer series.

Table 2.2
Lognormal estimator of mean 12-month returns and their 95 per cent confidence interval

Item Calculation basis Value

Input data
))1(ln( iE + Log of sample average of monthly long interest rate relatives 0.00781983

γµ̂ Sample average of logs of monthly tγ 0.00331662

2ˆγσ Sample variance of logs of monthly tγ 0.00282259

N Number of monthly observations 372

Calculations:
))12(1( iE + 12))1(( iE += 1.09838181

Central estimate of expected 
return on market:

)(RE = 1-month expected )2/ˆˆ))1(exp(ln()( 2
γγ σµ +++= iERE 1.01263065

))12((RE = 12-month expected 12))(())12(( RERE = 1.16255320

Variance of )12(R )1)ˆ))(exp(ˆ)ˆ)1((ln2(12exp()12( 22 −+++= γγγ σσµiEVarR 0.04668954

Variance of estimator NVarR /)12( 0.00012551

Standard error of estimator Square root of variance of estimator 0.01120310

Estimates of  MRP:
Estimate of 12-month MRP ))12(1())12(()12( iEREMRP +−= 0.06417139

Lower 95% confidence interval darderrorxsMRP tan96.1)12( −= 0.04221330

Upper 95% confidence interval darderrorxsMRP tan96.1)12( += 0.08612947

While there are some remnant uncertainties about the properties of the lognormal estimator, 
there is no evidence that it is fundamentally flawed, and its estimate of the expected value of 
12-month excess returns coheres with two more traditional estimates of that quantity. Its 
major advantage is that it has quite a narrow confidence interval.
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If the lognormal estimator based on monthly data is used, the conclusion that arises from it is 
that the mean 1-year MRP over the period 1974 to 2004 is “about” 6½ per cent.  This is a 
result close to 6 per cent, and the test does not offer strong support for 6½ per cent in 
preference to 6 per cent.   If the “long series” estimator is used, it implies an MRP of “about” 
7½ per cent over the last 122 years.  However, a 6 per cent 1-year MRP lies inside 1 standard 
error of this estimate.

2.5 A weighted estimator
The AGSM data, available since 1974, can be combined with data from prior to its inception, 
such as the pre-1974 data from the Officer series.  So long as one maintains the assumption 
that the distribution is stable, the parameters of the distribution can be estimated and, by 
virtue of the increased sample, the standard errors potentially can be reduced.

An agglomerated estimator Z of a population mean can be constructed from two independent 
estimators, X and Y , by combining them with weights depending on their respective 
variances.  Except in the trivial case where X or Y have a variance of zero (which would
imply that the mean is already known with certainty), the variance of the estimator Z will be 
smaller than the variance of either of the estimators X and Y .  Thus the estimator Z will be a 
more efficient estimator of the mean.  Appendix C provides more details.

Under the null hypothesis of a constant mean for the period 1883 to 2004, it is possible to 
construct two independent estimators as follows.  The first estimator is an arithmetic average 
of the 1-year returns for the period 1883 to 1973 from the Officer series.  The second 
estimator is a lognormal estimator based on AGSM monthly data for the period January 1974 
to December 2004.  The estimates of the mean and the variances of those estimates are shown 
in Table 2.3 under “Input Data”.  The optimal weighted estimate and its variance are also 
shown.  The weighting scheme is set out in Appendix C.

The weighted estimate of the mean, based on 92 observations from the Officer series (1883 to 
1973 and then 2004) and 372 observations from the AGSM series (January 1974 to December 
2004) is 6.9 per cent.  It has a standard error of just 0.9 percentage points which is 
considerably smaller than the 1.5 percentage point standard deviation on the full Officer series 
and moderately smaller than the standard error of 1.1 percentage points when the logarithmic 
estimator is applied to the AGSM monthly data.  However, it must be remembered that these 
calculations are predicated on a constant mean throughout the estimation period.

Table 2.3
Efficient agglomerated estimator of mean 1-year returns and their 95 per cent confidence interval

Item Calculation basis Value

Input data:
X Average of annual excess returns 1873 to 1973 from Officer series 7.737391
Var X Variance of average excess returns 1873 to 1973 from Officer series 2.248630
Y Logarithmic estimator of 12-month return from AGSM data 1974 to 2004 6.417139
Var Y Variance of logarithmic estimator of 12-month return from AGSM data 1974 to 2004 1.255095

Weighted estimate:
Z Calculated as per Appendix C 6.890076
Var Z Calculated as per Appendix C 0.805498
Standard error of Z 0.897496
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3. Is There Evidence of Structural Change in Excess Return 
Distributions?

One of the difficulties with estimation models which assume stability of underlying 
distributions is that the assumption is intuitively difficult to justify.  As Merton (1992) notes, 
if the risk associated with the market varies then the MRP could be expected to vary too.  And 
if aggregate risk aversion, which could be expected to reflect preferences and the distribution 
of wealth, changes slowly over time, which seems a reasonable assumption, then it would 
have an impact on the MRP too.  In addition, if personal taxes, transactions costs, liquidity 
premia vary over time they may also have consequences for the distribution of excess returns.

Moreover, investors just do not have perfect knowledge of the distribution of returns, and 
their perceptions will be moulded by emerging information.  For instance, is it plausible to 
assume that investors expectations about returns were unaffected by the Depression?  Or is 
the Depression more realistically interpreted as, in the words of Cogley and Sargent (2004 –
p.27), an episode “shattering the representative consumer’s beliefs about the likelihood of 
expansions and contractions”?2

The difficulty with identifying a structural change, however, is that there are no strong a priori 
grounds to suggest when structural changes might have occurred.  And even if events can be 
identified that are so fundamentally important as to be likely to cause structural change, they 
may take effect over quite protracted periods.  Entering a dummy variable at the time of the 
fundamental event may not capture the influence of the structural change very well at all.

3.1 Tests for Equality of Means
One of the simplest forms of structural change is a once-and-for-ever change in the mean.3  
For instance, we could consider the case where there is a change in the mean occurring in 
Year X.  If we let A be the set of excess returns occurring before Year X and B the set of 
observations in Year X and afterward

Bt

At

iB

iAt

∈+

∈+=

επ

εππ
(3.1)

In that case we test for equality of Aπ and Bπ .

Gray (2001) considered such a model using the Officer data set with updates to 2000.  He 
sought to identify a series break by breaking the data set in two and comparing the means of 
the various pre- and post-break periods.  He considered breaks for each individual year from 
1960 through 1985.  Using t-statistics to test for equality of means, he found that in no case 
was there a statistically significant difference at the conventional 5 per cent significance level.  
Indeed in only one case could a significant difference be identified even at a 10 per cent 
significance level.

  
2 As they observe, “It certainly shattered prevailing opinions among economists.  For example, witness the evolution of Keynes’s 

thinking as he passed from the orthodoxy of A Tract on Monetary Reform (1923) to The General Theory of Employment, 
Interest and Money  (1936).”

3 Another very simple alternative is to allow for a linear time trend in the ex ante excess return, but this makes little sense as it 
implies that it either (a) gets larger and larger or (b) becomes negative and more and more so, ad infinitum.
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Essential Services Commission Victoria (2002b) noted that, in assigning weight to Gray’s 
evidence:

A general problem with the application of empirical tests to actual equity returns in 
general is that the variability in annual equity returns makes it very difficult to discern 
changes to the underlying market risk premium.  Specifically in relation to the test 
performed by Professor Gray, this meant that while a lot of comfort could have been 
taken if the hypothesis of ‘no change’ had been rejected, the failure to reject the 
hypothesis does not provide much positive for the proposition that the mean has 
remained unchanged.  [p. 326]

It notes that, in statistical terms, these t-tests lack “power”, which means that they run a 
potentially large risk of accepting the hypothesis that there has been no change in the market 
risk premium even when there has.

To investigate this issue further, we carried out a Monte Carlo study to clarify the power of 
these tests.  The purpose of the Monte Carlo study was to answer the following question:  If 
there was a fall in the market risk premium of x percentage points, what is the chance that the 
t-tests would confirm that this had happened?  To answer that question we considered the case 
of a constant market risk premium for a 90 year period, and then an x per cent reduction to a 
new, constant market risk premium for the following 32 years.  In terms of the actual dataset 
this corresponds most directly to an assessment of the power of a test for a structural break 
occurring in 1973, but similar results could be expected for other break points.  We 
considered several sizes of break − reflected in the value of x − ranging from 1 to 10 
percentage points.4

To implement the Monte Carlo study 10,000 sets of 122 observations were drawn (with 
replacement) from the set of excess returns observed from 1883 to 2004.5 For each of these 
samples, the value of each observation was then reduced by x per cent from 1973 onward, for 
different values of x.  Thus, by construction, we know that the mean for the period 1973 to 
2004 is x per cent lower;  the question is how effective the t-tests are in detecting it.

If a t-test of one of these data sets rejects the hypothesis that there has been a reduction in the 
average, then the test has failed as, by construction, we know that there actually was a 
reduction of x per cent.  For each of the 10,000 simulations, t-statistics were calculated and, 
for a range of significance levels, the decision was made whether to accept or reject the null 

  
4 We commence the Monte Carlo study with the null hypothesis that there is a constant equity premium.  Under this assumption 

we can draw (hypothetical) alternative realisations of the ex post equity premium for the years 1883 to 2004 by drawing (with 
replacement) 122 values from the actual ex post equity premia.  This was done with a random number generator and a 1-in-122 
chance of selection for each observation in each drawing.  The sample forms a sequence, and the first 90 observations in the 
sequence are taken as is, but x percentage points are deducted from the last 32 observations.  We then test the hypothesis that 
the mean is lower for the last  32 (which have been adjusted) than for the first 90.  We choose a significance level at which we 
will accept or reject the null hypothesis of no-change.  If we accept the null hypothesis, then the test has failed because we 
know that, in fact, the mean has changed.  We carried out 10,000 iterations of this procedure to calculate the power at different 
size structural breaks and significance levels.

5 The dataset includes  a franking credit value of 0.6 per cent per annum after the introduction of dividend imputation in mid 
1987.
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hypothesis of “no change”.6 For each significance level the number of rejections was counted 
over all 10,000 simulations.  The number of rejections divided by 10,000 then gives the 
proportion of occasions on which the “no change” hypothesis was rejected, and this 
proportion measures the power of the test.  A power of 100 per cent would mean that the test 
always worked, while a power of zero would mean that it never worked.

Table 3.1 summarises the results.  The first column shows the power of the test when the 
statistical testing uses a 5 per cent significance level, which is common in statistical analysis 
and is what was employed by Gray.  If the reduction in the market risk premium is 1 
percentage point, the t-test detects this structural break only 8 per cent of the time.  Small 
variations are of course hard to detect.  But if there was a 5 percentage point break the test 
would detect that a change had occurred only 40 per cent of the time.  While such a change 
might not be statistically significant, it certainly is economically significant.

The second and third columns of Table 3.1 show the power when lower significance levels 
are adopted.  As would be expected a lower significance level does improve the power of 
tests.  But power generally remains low.  Consider the case where the data contain a 5 per 
cent reduction in the market risk premium.  At a 10 per cent significance level, the test 
succeeds only 55 per cent of the time, while at a 25 per cent significance level it succeeds 77 
per cent of the time.

A key conclusion that emerges from these power tests is that t-tests at the conventional 5 per 
cent statistical significance level on the annual historic returns series are unlikely to detect 
some changes in the MRP which are of considerable economic significance. 

Table 3.1
Power of tests of a changed market risk premium

significance level

5 per cent 10 per cent 25 per cent

power (per cent) power (per cent) power (per cent)

1 percentage point 8 15 33

2 percentage points 13 22 44

3 percentage points 20 32 56

4 percentage points 29 43 67

5 percentage points 39 55 77

6 percentage points 51 66 84

7 percentage points 63 75 90

8 percentage points 73 83 94

9 percentage points 81 90 97

10 percentage points 88 94 98

  

6 The statistic is calculated as 
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samples A and B.  It could be argued that Satterthwaite’s procedure should be used to allow for unequal variances because, as 
will be shown subsequently, there is strong evidence against a constant variance over time.  Power tests were also conducted on 
this basis.  The power of the t-tests using that procedure was very similar to the power under the “pooled variance” approach.
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3.2 Tests for Equality of Variances
This testing can be extended to check for a structural break in variances.  It is apparent even 
from visual inspection of Figure 2.1 that excess returns became more volatile after about 
World War II.  We carried out tests for equality of variances in different time periods, in a 
similar style to Gray’s tests for equality of means.  The tests overwhelmingly reject the 
hypothesis of constant variances.  Results are presented for 1904 through 1984 at 10 year 
intervals in Table 3.2.  Each of the tests but that for 1984 reject the hypothesis of constant 
variance;  by 1984 the early period included the volatile years from the late 1940s to 1983 and 
thus there was no apparent change in variance for this comparison.  The rejections for 1904 
through 1974 were highly significant and in some cases extremely so.  For instance, the F-test 
for 1944 rejects the hypothesis of constant variances at a significance level of 0.00006 per 
cent.  The issue of non-constant variances will be revisited in a consideration of the time 
series properties of the data.

Table 3.2
Tests for a Break in the Variance of Excess Returns

Date of Break F-stat Prob(F)

1904 4.05 0.0003997

1914 5.80 0.0000004

1924 5.09 0.0000001

1934 3.45 0.0000050

1944 3.66 0.0000006

1954 3.25 0.0000031

1964 3.48 0.0000010

1974 2.68 0.0001832

1984 1.23 0.2493631

A balance needs to be struck between the significance and the power of tests.  The natural 
tendency is to accept the conventional 5 per cent significance level as it is common in 
statistical practice, possibly without giving much consideration to the power of tests.  But it is 
desirable to strike a balance having in mind the consequences of the two types of error that 
can arise − accepting the hypothesis of a lower market risk premium when in fact it has not 
changed (Type I error) and rejecting the hypothesis of a lower market risk premium when it 
has in fact changed (Type II error) − and the costs associated with each.  Only if one believed 
that setting the cost of capital too low vastly outweighed the costs of setting it too high could 
one place so much weight on significance and so little on power.  Washusen (2004) reports 
that MRP parameters of 3 to 4 per cent have been set in the UK without a drying-up of utility 
investment.

3.3 Tests for Autocorrelation and Other Serial Dependence
In the analysis thus far the issue of serial dependence in the data has been ignored.  However, 
if there is serial dependence it may have important implications for parameter estimates −
both means and standard errors.  The time series characteristics of the data, and consequent 
modifications to the estimation strategy are explored in this section.
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A number of influential studies have reported the existence of autocorrelation in both stock 
market returns and volatilities.  For instance in the US Poterba and Summers (1989) found 
evidence of positive autocorrelations in returns over short periods and negative 
autocorrelations over long periods.  Also in the US, Fama and French (1988) report large 
negative autocorrelations for return horizons beyond a year, and estimate that 25 to 45 per 
cent of the variation in three to five year stock returns is predictable from past returns.  While 
the validity of these findings has since been challenged, for instance in Richardson (1991) and 
Lamoureux and Zhou (1996), they remain influential and there are differences of view as to 
the existence of autocorrelation in returns.

If autocorrelation exists, then a model structure that allows for it is likely to fit better than one 
which ignores it.  If such a model can significantly reduce the unexplained variation in returns 
it should have more power to detect structural breaks than a naïve “white noise” model.  It is 
useful therefore to further investigate the time series properties of the Officer data to 
determine whether autocorrelation is present.

Figures 3.1a and 3.1b show the sample autocorrelation (AC) function and partial 
autocorrelation (PAC) function for the annual excess return data with 95 per cent confidence 
bands.7 These functions can sometimes give a preliminary insight into the nature of 
autocorrelation.  The AC coefficient at 2 lags is negative and almost significant at a 5 per cent 
level and the AC coefficient at 8 lags is significantly positive.  Otherwise the AC coefficients 
are insignificant.  The PAC coefficient at 2 lags is significantly negative.  Moreover the first 7 
AC coefficients are generally negative.

Figure 3.1a
Autocorrelations of excess returns at different lag lengths with confidence intervals
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7 These sample autocorrelation coefficients suffer a negative bias.  However, most would remain negative if the Fuller bias 

correction were made, as they would be increased by less than 0.01 (see Campbell, Lo and MacKinlay 1997 p. 46).
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Figure 3.1b
Partial autocorrelations of excess returns at different lag lengths with confidence intervals
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At a conventional 5 per cent significance level these patterns do not indicate significant 
autocorrelation.  However, if interpreted literally, the preponderance of negative values of the 
sample autocorrelation coefficient at short lags is suggestive of a time series process with 
negative-coefficient moving average elements, with the weak significance of the estimates 
meaning that not much weight can be placed on this.8 Such a process could be produced if a 
positive or negative deviation from mean excess return in one period tends to be followed by 
deviations of opposite sign over the next few periods.  Such a pattern would be observed if 
stock prices exhibit a degree of mean reversion.  However, the sample AC and PAC functions 
cannot conclusively resolve whether autocorrelation is present.  Further tests are needed.

Three commonly used diagnostic tests are the Q (“portmanteau”) test developed by Box and 
Pierce and modified by Ljung and Box, the Lagrange multiplier (LM) test developed by 
Breusch and Godfrey, and Durbin’s “alternative” test.9 These are tests for strict white noise −
i.e., that errors are uncorrelated and have constant variance.  It follows that in interpreting the 
test results we need to be careful not to attribute to serial correlation what could in fact be 
caused by some form of heteroskedasticity; this problem is considered subsequently.

Table 3.3 shows the (Ljung-Box) Q statistic at different lags and the probability of attaining 
such values if there truly is no dependence in the data.  For the first 7 lags there is not much 
evidence of autocorrelation.  However, at 8 or more lags there is in every instance rejection at 

  
8 Discussions of the visual interpretation of the autocorrelation function can be found in Harvey 1993 Ch. 2, Hamilton 1994 pp. 

48-52, Enders 1995 pp. 78-82, and Gujarati pp. 840-845.
9 Perhaps the best known test for autocorrelation is the Durbin-Watson test.  However, the Durbin-Watson test is of use only in 

detecting first order autocorrelation and is thus too limited for our purposes.  Greene (2003, pp. 268-271) discusses the LM, Q 
and DW tests.  Harvey (1993, p.77) discusses the connection between the LM and Q tests. Under the null hypothesis the LM 
and Q statistics share a common asymptotic Χ2 distribution, but they assume different values in finite samples because of a 
finite sample adjustment included in the Ljung-Box variant of the Q test.  Maddala (2001) cites research that finds Q tests may 
have weak power and he argues that the LM test generally performs better.
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a 5 per cent significance level and in some cases rejection at a 1 per cent significance level.10  
Table 3.3 also shows Breusch-Godfrey (LM) statistics for different lags.  There is no evidence 
of dependence at the 5 per cent level up to 6 lags (although dependence can be rejected at the 
10 per cent level for 2 lags).  But the LM test shows quite strong evidence of autocorrelation 
at 7 lags (significant at 0.9 per cent) and at longer lag structures.11 The Table also shows the 
Durbin test, and its results are broadly consistent with the Ljung-Box and Breusch-Godfrey 
tests:  strict white noise is rejected at the 5 per cent significance level at 7 or more lags.

Table 3.3
Tests of autocorrelation and autoregressive conditional heteroskedasticity in excess returns 

Ljung-Box 
test

Breusch-
Godfrey 

test

“Robust” 
Breusch-
Godfrey 

test

Durbin’s 
alternative 

test
“Robust” 

Durbin test

LAG
Χ2

statistic Prob > stat F statistic Prob > stat F statistic Prob > stat F statistic Prob > stat F statistic Prob > stat

1 1.2513 0.2633 1.223 0.2710 0.612 0.4356 1.215 0.2725 0.621 0.4323

2 5.3694 0.0682 2.865 0.0610 1.465 0.2353 2.933 0.0571 2.012 0.1383

3 5.3699 0.1466 1.942 0.1267 0.984 0.4031 1.974 0.1218 1.336 0.2662

4 5.6814 0.2242 1.685 0.1583 0.852 0.4954 1.712 0.1523 1.233 0.3010

5 6.3723 0.2717 1.577 0.1723 0.837 0.5265 1.604 0.1647 1.142 0.3425

6 7.7216 0.2592 1.845 0.0969 1.190 0.3171 1.917 0.0844 1.789 0.1080

7 10.996 0.1388 2.705 0.0127 1.908 0.0753 3.013 0.0063 2.340 0.0291

8 21.564 0.0058 2.623 0.0117 1.617 0.1287 2.961 0.0050 2.243 0.0298

9 23.787 0.0047 2.771 0.0060 1.720 0.0936 3.241 0.0017 2.682 0.0077

10 24.074 0.0074 2.529 0.0092 1.711 0.0882 2.945 0.0028 2.573 0.0081

11 24.487 0.0108 2.310 0.0144 1.537 0.1302 2.672 0.0048 2.316 0.0142

12 24.768 0.0160 2.122 0.0220 1.506 0.1351 2.435 0.0082 2.106 0.0232

13 24.841 0.0242 1.941 0.0347 1.446 0.1533 2.201 0.0150 2.022 0.0268

14 24.865 0.0359 1.771 0.0548 1.391 0.1730 1.980 0.0277 1.819 0.0470

15 30.01 0.0119 1.820 0.0434 1.382 0.1730 2.078 0.0179 1.909 0.0321

16 30.882 0.0139 1.702 0.0606 1.368 0.1762 1.923 0.0281 1.827 0.0394

17 30.977 0.0201 1.600 0.0816 1.297 0.2134 1.789 0.0423 1.824 0.0373

18 35.493 0.0082 1.615 0.0744 1.332 0.1894 1.832 0.0340 2.060 0.0144

19 37.759 0.0064 1.747 0.0442 1.285 0.2160 2.076 0.0125 2.279 0.0056

20 38.206 0.0084 1.656 0.0592 1.230 0.2524 1.948 0.0193 2.155 0.0084

In their standard forms the Ljung-Box, Breusch-Godfrey and Durbin alternative tests are not 
robust in the presence of heteroskedasticity. However, heteroskedasticity-robust variants can 
be constructed for the Breusch-Godfrey and Durbin alternative tests (see, respectively, 
Wooldridge 2001 and 2003).  While these robust tests are asymptotic tests, with uncertain 

  
10 Sensitivity to outliers was tested by replacing the highest and the lowest excess return observations with the mean.  When this 

was done, the Q tests did not reject independence at the 5 per cent level but still rejected at 10 per cent.  This illustrates that 
there is considerable sensitivity to a few observations in the data set.  The tests were also carried out for two halves of the data 
set.  For the period 1883 to 1943 serial independence was not rejected, but it was at the 5 per cent level for the period 1944 to 
2004.  There are 61 observations in each of these two sub-samples, and less when one introduces a lag structure; these sizes 
may be sufficiently low to hamper statistical inference.

11 Exclusion of the highest and lowest excess return observations did not materially change the results of the LM test.  The test 
was also applied to two halves of the sample (1883 to 1943 and 1944 to 2004); the picture emerging from this differed from the 
Q tests in that serial dependence was significant at the 5 per cent level for 1883 to 1943 but not for 1944 to 2004.  Of course 
halving the sample increases the standard errors and can make it more difficult to say things about the data. 
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small sample properties, it is common to employ them where the data under consideration is 
known to be heteroskedastic.

The results of these robust tests are also presented in Table 3.3.  The robust version of the LM 
test indicates that the evidence for autocorrelation is substantially weaker than is suggested by 
the test in its basic form.  None of the lags test positive for autocorrelation at a 5 per cent 
significance level, although there are some positive results at a 10 per cent level.  However, 
the robust form of the Durbina alternative test continues to indicate the presence of 
autocorrelation at conventional test values.  The divergence between the two sounds a 
cautionary note.  It may be due to differences in the small-sample properties of the tests − the 
Durbin alternative test, for instance, effectively operates on regression parameters which are 
biased in finite samples. Moreover, for a given sample size, the extent of that bias potentially 
increases as the number of lags increases, and this may explain the significant test results at 
long lags with the Durbin alternative approach.  The Breusch-Godfrey test is probably to be 
preferred under the circumstances.

The conclusion to emerge is that there is some weak evidence of autocorrelation in the excess 
returns data when we consider several years of lags.  In drawing this conclusion, it is assumed 
that the results of the Durbin alternative tests cannot be relied on.  This means that the 
primary evidence is the Breusch-Godfrey tests which do not reject the “no autocorrelation” 
hypothesis at a 5 per cent level, but do in some instances reject it at a 10 per cent level.

Testing the variance structure of excess returns
The previous tests have in common that they investigate the autocorrelation structure of the 
excess returns data.  But it is also possible to test for autocorrelation by analysing variances 
over different periods.

Variance ratio tests start from the insight that if there truly is no autocorrelation and the 
variance is constant through time, then an implication is that the variance of returns is 
proportional to the period over which they are calculated.  For instance, the variance of 2-year 
returns would be twice as large as the variance of 1-year returns.  And the variance of q-year 
returns would be q times as large as the variance of 1-year returns.12 This observation leads to 
the construction and testing of so-called “variance ratios”.13

The H-period variance ratio is defined as

2
1

2 /
)(

σ

σ H
HVR q= (3.2)

  
12 More generally, if we calculate q-period returns, then in a large population in the absence of autocorrelation, their variance 

should be equal to the sum of the variances of each of the constituent 1-year returns.  This is simply a reflection of the fact that 

if Z is the sum of two random variables X and Y, then the variance of Z, 2
Zσ , is given by

XYYXZ σσσσ 2222 ++=

where 2
Xσ and 2

Yσ are the variances of X and Y respectively and XYσ is their covariance.  If there is no autocorrelation the 
covariance is zero, and the expression reduces to the sum of the two variances.  Kreyszig (1970 ) p.137 provides a 
demonstration.

13 See Campbell, Lo and MacKinlay 1997, pp. 68-74 for a discussion of the variance ratio methodology.
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In the case where there is no autocorrelation and the variance of 1-year returns is constant (i.e. 
“homoskedasticity”) the variance of a q-period return is given by

2
1

2 σσ Hq = (3.3)

which means that 1)( =HVR .  If there is negative autocorrelation 1)( <HVR , and conversely if 
there is positive autocorrelation 1)( >HVR .

An attraction of the variance ratio approach is that it does not rely on a stable autocorrelation 
structure.  For instance, if an above average return is likely to be followed by below average 
returns over the next few years, but with that mean reversion having a somewhat unstable 
timing, it might be easier to detect with variance ratios than autocorrelation coefficients.14  
For example, Cochrane (1988) notes, in the context of US GNP, that where mean reversion 
exists, “that reversal is likely to be slow, loosely structured and not easily captured in a simple 
parametric model” [p. 898].  In the context of Australian excess returns, it also seems 
desirable to admit the possibility that mean reversion may also be loosely structured, and to 
employ tests that are robust to such a situation. 

The testing strategy employed here follows the approach set out in Campbell, Lo and 
MacKinlay (1997).  It involves making an estimate of the variance ratio, )(HVR , which is then 
used to construct a test statistic, )(Hψ , which is asymptotically normal and can be used to test 
the hypothesis of no autocorrelation.  Importantly, Campbell, Lo and MacKinlay set out a 
testing framework which can accommodate overlapping multi-period returns and which 
includes adjustments for small sample bias.

This methodology was applied to the Officer series of Australian excess returns data for the 
period 1883 to 2004.  Table 3.4 presents values of the bias-adjusted variance ratio )(HVR , the 
test statistic )(Hψ (which is the test-statistic for the null hypothesis that the variance ratio is 1 
under the assumption of homoskedastic returns), and the probability values associated with 

)(Hψ (which asymptotically has a standard normal distribution) for return periods from 2 to 
20 years in length.15 The variance ratios are each less than 1, although not much different in 
the case of a 2-year return.  Interpreted literally, these variance ratios would suggest that there 
is substantial mean reversion over a period of several years.  For instance, 7-year returns have 
a variance which is only half as large as it would be if there were no autocorrelation.  
Autocorrelation of this magnitude certainly would be economically significant.  But before 
drawing any strong conclusions we must question whether these variance ratios differ from 1 
in a statistically significant way.  The tests reject the null hypothesis of no autocorrelation at a 
5 per cent significance level for 7, 8, 9 10 and 11-year returns and reject that null at a 10 per 
cent significance level for most other return period lengths.

  
14 It can be shown that the variance ratio is related to the autocorrelation coefficients in the following way: 

∑
−

=







 −+=

1

1

)(121)(
H

k
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H
kHVR ρ

This means that if we knew the parameters of the distribution of returns, the variance ratio would tell us nothing new.  But 
usually we do not know those parameters, and must estimate them.  When we are estimating to test for autocorrelation, the 
variance ratio will be useful if the variance of the summation over the )(kρ is less than the sum of the variances of the terms 

in )(kρ .
15 The case of a 1-year return is not presented because, by arithmetic identity, this variance ratio is simply 1.
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However, as was noted previously, the assumption of constant variance (homoskedasticity) is 
difficult to maintain in the case of the Officer data.  Moreover, it would generally be regarded 
as a tenuous assumption in respect of financial market returns.  Heteroskedasticity seems 
highly likely, in which case the test results described may simply constitute a rejection of 
homoskedasticity.

Campbell, Lo and MacKinlay (1997) set out a heteroskedasticity-robust test statistic which 
can be used to test for autocorrelation in the presence of heteroskedasticity of unknown form.  
This “robust” test statistic, )(* qψ , is also presented in Table 3.4 along with associated 
probability values.  These tests suggest that the evidence for autocorrelation is weaker;  only 
the 8-year variance ratio differs from 1 at a 10 per cent significance although for most other 
return period lengths a difference is statistically significant at a 20 per cent level.

Table 3.4
Variance ratio tests for autocorrelation in excess returns

Periods )(qVR )(qψ Prob > | )(qψ | )(* qψ Prob > | )(* qψ |

2 0.910 -0.991 0.3216 -0.702 0.4828
3 0.764 -1.733 0.0830 -1.250 0.2112
4 0.699 -1.763 0.0779 -1.290 0.1971
5 0.640 -1.802 0.0715 -1.333 0.1826
6 0.570 -1.905 0.0568 -1.423 0.1546
7 0.493 -2.030 0.0423 -1.531 0.1257
8 0.391 -2.257 0.0240 -1.717 0.0860
9 0.381 -2.111 0.0348 -1.615 0.1064
10 0.347 -2.117 0.0343 -1.627 0.1037
11 0.330 -2.066 0.0388 -1.594 0.1110
12 0.324 -1.974 0.0483 -1.526 0.1269
13 0.315 -1.889 0.0589 -1.463 0.1434
14 0.313 -1.778 0.0754 -1.350 0.1770
15 0.309 -1.783 0.0747 -1.388 0.1652
16 0.283 -1.725 0.0846 -1.316 0.1883
17 0.254 -1.787 0.0739 -1.398 0.1622
18 0.237 -1.689 0.0912 -1.281 0.2003
19 0.243 -1.672 0.0946 -1.290 0.1970
20 0.221 -1.717 0.0860 -1.354 0.1758

3.4 Testing for Structural Breaks With ARMA Models
Autocorrelation in the excess returns series means that potentially useful information is not 
used.  Therefore autoregressive moving average (ARMA) specifications were considered in 
an attempt to better model the data.

A basic model of excess returns specifies the excess return in period t, tπ , as the sum of its 
conditional mean in period t, tπ̂ , plus an error term tu with mean zero and uncorrelated over 
time

ttt u+= ππ ˆ (3.4)
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The conditional mean in tπ̂ could be a constant, or it could be related to a set of exogenous 
explanatory variables.  For instance the conditional mean could be given by the model

tt bDa +=π̂ (3.5)

where ktDt <= ,0 and ktDt ≥= ,1 .  In this model at =π̂ prior to time period k and bat +=π̂

form time period k onward, i.e. there is a structural break at period k .

If the coefficient b is significantly different from zero, then a structural change has occurred.  
If the error terms tu are autocorrelated, then while ordinary least squares regression will 
continue to produce unbiased estimates, it will no longer produce the most efficient estimates 
(i.e. the minimum variance estimates).  This means that the power of tests to detect a 
structural break encapsulated in the coefficient b on the dummy variable will not be 
maximised.  This problem can be addressed by including a specification which allows for 
autocorrelation in the data.

Equation 3.4 can be rearranged to

ttt u=−ππ ˆ (3.6)

The autoregressive moving average (ARMA) model allows for autocorrelation by 
incorporating lagged values of the dependent variable and past prediction errors as follows

qtqttptptptttt −−−−−− ++++−++−=− εβεβεππαππαππ ...)ˆ(...)ˆ()ˆ( 11111 (3.7)

This then leads to the question of what lag structure to fit.  If the excess returns are mean 
reverting over a period of several years, then a moving average process would provide a 
literal representation of this.  However, autoregressive components also have corresponding 
moving average processes (at least so long as the data are stationary), and it is possible that 
these provide a more parsimonious representation of the moving average process.  Therefore 
autoregressive elements should not be ignored in the specification search.

Three “general to specific” specification searches were carried out.  These searches are 
summarised in Box 3.1 and Table 3.5.  The 2 viable models were tested for structural breaks 
with dummy variables over the period 1960 to 1985.  The break parameters were not 
significant for the MA(8) specification and the MA(2/8 constrained) model produced spurious 
results.

In fact there are potential biases in parameter estimates when ARMA models are estimated in 
small samples.  “Small” is of course a vague concept, but there is certainly a potential for 
problems with an 8-lag structure in 122 observations.

To explore the extent of these biases Monte Carlo simulations were carried out.  The 
simulations involved taking a sample of 122 observations, drawn randomly with replacement 
from the Officer data, and then estimating the parameters of an MA(8) ARMA model with the 
8 MA coefficients constrained to be equal.  This procedure was repeated 5,000 times to 
generate a distribution of the ARMA model parameters in the case where there truly is no 
autocorrelation.
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Box 3.1
Specification searches for an ARMA model

Nesting 1: The first specification considered was a fairly parsimonious one − an ARMA(2,2).  This is 
presented in Table 3.5 under “Nesting 1”.  The AR(1/2) MA(1/2) version was highly significant overall, but not 
all coefficients were at the 5-per cent level. The least significant coefficient was the AR(1) term, and this was 
eliminated.  The new specification was still highly significant overall and the Schwarz Information Criterion 
(SIC) improved, meaning that the elimination of AR(1) was justified on grounds of parsimony.  The remaining 
variables all were significant.  There are risks of “common factors” in models with AR and MA terms, and a 
model was considered with the AR(2) term excluded.  The SIC deteriorated marginally and the model became 
insignificant even at a 10 per cent level.

Nesting 2: A 10 lag moving average structure − MA(1/10) − was considered.  An MA (1/9) lag structure was 
superior according to the Schwarz Information Criterion and an MA(1/8) was superior to this.  However, an 
MA(1/7) structure was inferior to the MA(1/8) structure.  With all 8 lags in place the specification was highly 
significant but not all the moving average terms had significant coefficients.  The coefficients for lags 1 to 7 
were generally negative but the 8 year lag had a significantly positive coefficient.  Piecewise deletion of 
insignificant terms led to the deletion of all of lags 1 to 7.  Only the 8 year lag remained and was highly 
significant.  This is a very odd lag structure.  It seems likely that it reflects features specific to this quite small 
dataset rather than a resilient aspect of the data generating process.

Nesting 3: In Nesting 3 constrained lag structures are considered against the unconstrained MA(1/8) 
alternative.  The first variant involves constraining the 1st to 8th MA terms to have the same coefficient values.  
the coefficients for the 2nd through 7th year MA lags were constrained to be equal.  An MA(1/8) model was then 
estimated.  The MA(1) terms was not significant and was eliminated.  The common coefficient for the MA(2/7) 
terms was negative and highly significant and the MA(8) term had a positive and highly significant coefficient.  
Finally a very general specification, an MA(8) model with all MA coefficients constrained to equality was 
estimated.  This specification nests both the MA(2/7) and MA(8) models, both of which are superior according 
to the SIC.

The significance of an ARMA model can be tested with a Wald statistic, which theoretically 
follows a Chi-2 distribution.  In the simulations it was found that for 15 per cent of the 
simulations the Chi-2 value for 5 per cent significance was exceeded.  Clearly there is a major 
tendency to over-accept the significance of ARMA models involving 122 draws form the 
Officer dataset.  This means that the Chi-2 statistic cannot be used in the usual way to infer 
the significance of the results.

However, it is possible instead to use the simulations to form a non-parametric test.  The 
Wald statistic for the constrained MA(8) model on the actual Officer data was 6.2 per cent 
down from the top.  This suggests that the MA(8) structure in the true series of historic excess 
returns is significant at a 6.2 per cent level, just outside the conventional 5 per cent. 

These simulations tell us nothing about the power of the non-parametric test.  Given that the 
MA(8) specification is almost significant at the 5 per cent level, and given that substantial 
power problems were evident with simple comparisons of means, it is still worthwhile 
looking for structural breaks by including year-of-break dummies in an MA(8) specification.  
This was done and the results are reported in Table 3.6.
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Table 3.5
ARMA Modelling Results

Constant AR(1) AR(2) MA(1) MA(2) MA(3) MA(4) MA(5) MA(6) MA(7) MA(8) sigma Wald SIC

Nesting 1:
AR(1/2) MA(1/2)
coeff 7.314 0.237 0.231 -0.418 -0.434 16.03 124.2 1,047.7
std err 0.452 0.255 0.211 0.197 0.197 1.088
prob 0.000 0.353 0.273 0.034 0.027 0.000 0.000
AR(2) MA(1/2)
coeff 7.307 0.389 -0.216 -0.610 16.06 84.3 1,043.4
std err 0.461 0.191 0.072 0.132 1.109
prob 0.000 0.042 0.003 0.000 0.000 0.000
MA(1/2)
coeff 7.212 -0.181 -0.275 16.36 3.4 1,042.7
std err 0.823 0.138 0.158 1.144
prob 0.000 0.190 0.082 0.000 0.183
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Table 3.5 (continued)
ARMA Modelling Results

Constant AR(1) AR(2) MA(1) MA(2) MA(3) MA(4) MA(5) MA(6) MA(7) MA(8) sigma Wald SIC

Nesting 2:
MA(1/8)
coeff 7.261 -0.116 -0.268 -0.103 -0.056 -0.139 -0.073 -0.150 0.236 15.26 32.1 1,055.6
std err 0.496 0.109 0.102 0.138 0.151 0.198 0.164 0.148 0.128 0.982
prob 0.000 0.285 0.008 0.456 0.709 0.483 0.655 0.310 0.065 0.000 0.000
MA(1/3,5/8)
coeff 7.251 -0.120 -0.282 -0.110 -0.133 -0.074 -0.180 0.241 15.28 30.6 1,051.1
std err 0.509 0.106 0.097 0.127 0.190 0.164 0.113 0.126 0.980
prob 0.000 0.257 0.004 0.384 0.485 0.652 0.112 0.056 0.000 0.000
MA(1/3,5,7/8)
coeff 7.235 -0.129 -0.286 -0.098 -0.168 -0.192 0.231 15.30 27.0 1,046.8
std err 0.531 0.107 0.098 0.142 0.136 0.106 0.130 0.972
prob 0.000 0.227 0.003 0.490 0.216 0.071 0.077 0.000 0.000
MA(1/2,5,7/8)
coeff 7.240 -0.153 -0.300 -0.195 -0.170 0.186 15.37 26.6 1,042.8
std err 0.552 0.101 0.102 0.131 0.107 0.088 0.961
prob 0.000 0.133 0.003 0.138 0.111 0.033 0.000 0.000
MA(1/2,7/8)
coeff 7.189 -0.139 -0.295 -0.187 0.176 15.66 19.0 1,042.2
std err 0.804 0.142 0.162 0.110 0.097 1.055
prob 0.000 0.328 0.069 0.088 0.071 0.000 0.001
MA(2,7/8)
coeff 7.218 -0.226 -0.144 0.184 15.80 26.3 1,039.4
std err 1.174 0.128 0.122 0.124 1.021
prob 0.000 0.076 0.237 0.139 0.000 0.000
MA(2,8)
coeff 7.289 -0.190 0.241 15.95 19.0 1,037.0
std err 1.505 0.130 0.095 1.051
prob 0.000 0.144 0.011 0.000 0.000
MA(8)
coeff 7.338 0.285 16.21 6.9 1,036.2
std err 1.854 0.108 1.080
prob 0.000 0.009 0.000 0.009
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Table 3.5 (continued)
ARMA Modelling Results

Constant AR(1) AR(2) MA(1) MA(2) MA(3) MA(4) MA(5) MA(6) MA(7) MA(8) sigma Wald SIC

Nesting 3:
MA(1/8)
coeff 7.261 -0.116 -0.268 -0.103 -0.056 -0.139 -0.073 -0.150 0.236 15.26 32.1 1,055.6
std err 0.496 0.109 0.102 0.138 0.151 0.198 0.164 0.148 0.128 0.982
prob 0.000 0.285 0.008 0.456 0.709 0.483 0.655 0.310 0.065 0.000 0.000
MA(1/8), MA(2=3=4=5=6=7)
coeff 7.284 -0.096 -0.138 -0.138 -0.138 -0.138 -0.138 -0.138 0.264 15.44 23.9 1,034.4
std err 0.527 0.140 0.041 0.041 0.041 0.041 0.041 0.041 0.110 0.997
prob 0.000 0.494 0.001 0.001 0.001 0.001 0.001 0.001 0.016 0.000 0.000
MA(2/8), MA(2=3=4=5=6=7)
coeff 7.294 -0.148 -0.148 -0.148 -0.148 -0.148 -0.148 0.259 15.49 19.3 1,030.6
std err 0.574 0.035 0.035 0.035 0.035 0.035 0.035 0.092 1.007
prob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000
MA(2/7), MA(2=3=4=5=6=7)
coeff 7.407 -0.128 -0.128 -0.128 -0.128 -0.128 -0.128 16.12 15.1 1,035.0
std err 0.413 0.033 0.033 0.033 0.033 0.033 0.033 1.030
prob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MA(8)
coeff 7.338 0.285 16.21 6.9 1,036.2
std err 1.854 0.108 1.080
prob 0.000 0.009 0.000 0.009
MA(1/8), 
MA(2=3=4=5=6=7=8)
coeff 7.363 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 16.51 14.41 1,040.5
std err 0.531 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 1.109
prob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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The first column of Table 3.6 shows the estimated break coefficient for dummies 
commencing in each year from 1960 to 1985.  The literal interpretation of the -1.95 
coefficient for 1960 is that the average excess return from 1960 onward was 1.95 per cent 
smaller than in the years before 1960.  The question is, how meaningful is this result?

First, the model does not appear to produce significant biases in the dummy coefficients.  The 
average from the simulations was about +0.1 and never more than 0.2.  There is no reason 
therefore to think that the model produces biased estimates out of the data.

Second, the z-statistics (in the second column) are high, being at least 3.6 in every instance 
(ignoring the minus signs).  If interpreted as a normal variate (which they are in the third 
column), the z-statistic would lead to strong rejections of the “no structural break” hypothesis.  
However, the z-statistics produced in the simulations do not follow a normal distribution, and 
it seems unreasonable therefore to assume that the z-statistic from the true series would do so 
either.

Third, it is possible to observe where each dummy coefficient sits in the distribution of 
coefficients generated in the simulations.  Their percentile is shown in the fourth column.  
They sit toward the bottom of the range, but not at the extreme ends of it.  For instance, the 
dummy coefficient for a structural break in 1960, -1.95 per cent, sits just above the 25th

percentile.  All of the dummies for the true data sit above the 17th percentile.  Fourth, 
however, this comparison makes no allowance for the explanatory power of the MA terms.  If 
they have good explanatory power, they reduce the (robust) standard errors of the dummy 
coefficients, thus boosting the z-statistics.  The z-statistics do make such an allowance.  The 
5th column shows the z-statistics percentile in the ranking of the simulated z-statistics.  And 
they do sit very low in this ranking.  All are below the 7th percentile and many are below the 
5th percentile.

The key conclusion to emerge from this table is that allowing for the autocorrelation in the 
data − probably due to mean reversion − provides stronger evidence for the view that there 
has been a structural break in the mean sometime over the last 40 years or more.  The 
evidence of a structural break is generally stronger at later dates.

However, it is difficult to accept this evidence with a high degree of confidence.  The MA(8) 
specification actually implies larger structural breaks than a specification with just dummies 
alone.  It is to be expected that the MA(8) component would reduce the variance of residuals 
and thus allow interpretation of dummy coefficients with a greater degree of confidence.  The 
fact that it accentuates the apparent size of structural breaks is an interesting finding, but in 
the absence of a good explanation, it leaves yet another question mark over the ARMA tests. 
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Table 3.6
Tests for a structural beak in an MA(8) model

Difference Robust z-stat Conventional prob
Difference 
percentile Z-rank percentile

1960 -1.94977 -3.6691 0.000182 0.2554 0.0606
1961 -1.95361 -3.67634 0.000177 0.262 0.0632
1962 -2.01929 -3.79993 0.000114 0.2488 0.0542
1963 -2.04761 -3.85322 9.4E-05 0.2438 0.0546
1964 -2.11849 -3.9866 5.75E-05 0.2338 0.0516
1965 -2.15424 -4.05387 4.47E-05 0.2402 0.0484
1966 -2.14996 -4.04582 4.61E-05 0.239 0.053
1967 -2.16808 -4.07992 4.06E-05 0.2398 0.0526
1968 -2.29339 -4.31573 1.64E-05 0.2322 0.047
1969 -2.41737 -4.54905 6.45E-06 0.2182 0.0368
1970 -2.49119 -4.68796 3.65E-06 0.2134 0.0326
1971 -2.43874 -4.58927 5.48E-06 0.2244 0.0414
1972 -2.43598 -4.58407 5.59E-06 0.233 0.0454
1973 -2.5466 -4.79223 2.37E-06 0.2182 0.035
1974 -2.48663 -4.67938 3.78E-06 0.221 0.0422
1975 -2.40008 -4.51651 7.36E-06 0.2314 0.0552
1976 -2.61533 -4.92157 1.37E-06 0.2122 0.0408
1977 -2.62169 -4.93353 1.3E-06 0.21 0.0434
1978 -2.67076 -5.02588 8.77E-07 0.2168 0.0456
1979 -2.76898 -5.21072 3.92E-07 0.217 0.0424
1980 -3.00288 -5.65087 5.4E-08 0.1996 0.0352
1981 -3.2796 -6.1716 4.65E-09 0.1846 0.025
1982 -3.18653 -5.99646 1.07E-08 0.1942 0.031
1983 -3.03984 -5.72043 3.92E-08 0.211 0.04
1984 -3.51576 -6.61602 5.3E-10 0.1798 0.0268
1985 -3.46007 -6.51122 8.9E-10 0.188 0.0336
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4. Predicting the Contemporary Market Risk Premium from 
Historical Data

4.1 Conceptual issues
This section considers alternative methods of predicting the contemporary MRP from 
historical data and compares the forecast accuracy of these methods.  The methods compared 
are all univariate, in the sense that they use only past excess returns data to generate MRP 
predictions.  They do not include models in which the MRP is determined by other exogenous 
variables.

With the exception of the simple average, each of these models places a premium on more 
recent excess return observations.  The rationale for such an approach is as follows.  Suppose 
that the MRP does change over time.  Suppose also that we could observe it (ie. that we could 
strip out the very large “noise” element which causes an individual year’s excess return to 
differ from the MRP in each year).  In that case we could fit a suitable time series model of 
the MRP.  Most of the useful information would be in very recent observations.  In the case 
where the market risk premium follows a random walk (and a constant MRP is a degenerate 
variant of this), the only relevant information would be the most recent value of the market 
risk premium.  But it is possible to imagine generating processes for the market risk premium 
in which other recent observations would also have useful information content.  For instance, 
if fundamental explanations for the value of the market risk premium lie in some trending 
macroeconomic variables, then the market risk premium could also be expected to show 
trending behaviour of its own.

As it is, we do not know the true historic values of the market risk premium, and must instead 
estimate them from excess returns.  If we had the option of sampling repeatedly at each point 
in time, we could improve the precision of estimates for each year’s market risk premium.  
Assuming that there were no limit on the size of the sample that could be drawn, then the true 
market risk premium  could be estimated with as high a degree of precision as was wanted.

However, the reality is that for each year there is only one excess return observation available.  
To deal with this problem, the standard approach is to make an assumption about the 
deterministic structure of the market risk premium, with the time series of excess returns then 
treated as repeated draws over this structure and used to estimate parameters for this 
deterministic structure.

A simple example of this approach is the case where the conditional value of the market risk 
premium is assumed to be constant, in which case a simple average of the longest possible 
series of data is used to estimate the market risk premium.  The validity of this model can also 
be tested using the data available.  Sections 2 and 3 of this report have been primarily 
concerned with doing just that:  testing whether the assumption of a constant market risk 
premium over more than 100 years is sustainable.  The general conclusion is that there is 
evidence of a downward shift in the market risk premium, but that it is statistically weak.

But of course a “constant market risk premium” model is not the only possible prior 
assumption.  The idea that the market risk premium could change over time is, intuitively, 
strongly appealing.  Why would it stay constant forever?  Peoples endowments, preferences, 
and indeed the riskiness of the market, all change over time, and each of these could be 
expected to affect the market risk premium.
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For this reason there is some attraction to weighting schemes which place more weight on 
recent excess return observations.  To compare the consequences of alternative weighting 
schemes, the following three alternatives were considered:

• equal-weighted moving averages;

• exponentially weighted moving averages; and

• the Hodrick-Prescott filter.

Moving average
The equal weighted moving average really just truncates the sample.  Moving average periods 
of 25 and 50 years were considered.  The effect is to discard any information outside the 
length of the moving average.

Exponentially weighted moving average
Exponentially weighted moving averages geometrically decrease the weights applied to 
observations in the more distant past.  A parameter α determines just how quickly the 
weighting falls away.  Let ...,2,1,0, =ici be the weights to apply to values of the equity 
premium.  The weighted average equity premium for period t is then

...ˆ 22110 −− ++= tttt ccc ππππ (4.1)

If the weights are geometric, we require that i
i cc )1(0 α−= .  α is thus a measure of how much 

past values are discounted.  A low value of α means a gradual reduction in the weights 
attached to past observations and a high value of α means a rapid reduction in the weight 
given to past observations.  It makes sense to require that the weights sum to 1, and when this 
is the case it can be shown that i

ic )1( αα −= .  Substituting this back into 4.1 gives the 
exponentially weighted average equity premium
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This can be reduced to a recurrence form which is easy to use in calculations
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This recurrence form expresses the exponentially weighted average as a weighted sum of the 
current period value of the equity premium and the preceding period exponentially weighted 
average.  It is suited to a certain sort of non-stationary process.  Since it is possible that the 
equity premium is non-stationary over the sample period that we have available, the 
exponentially weighted moving average is an interesting predictor to consider.16

  
16 See Chatfield (1996) pp 68-70 for further discussion.
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Hodrick-Prescott filter
The third moving average considered is the Hodrick-Prescott filter.  The underlying premise 
of this filter is that for some variables the rate of change of the variable is likely to have 
momentum and therefore should not change too quickly.  In visual terms this translates to the 
requirement that the data series move around smoothly over time.17 There is thus a trade-off 
between contemporaneity and smoothness.  Smoothness is achieved by giving more weight to 
more distant observations.  To apply the HP filter a “smoothness” parameter λ is selected.  
The details of the filter and algorithms to compute it are not given here as they are complex 
and messy.  Calculations were carried out with an HP filter written for STATA by Sorensen 
(2005).

In the case of the HP filter the matter of revisions must also be taken into consideration.  
Trend estimates are revised as new data becomes available, and the revisions are generally 
largest for the most recent trend estimates.  It may therefore be preferable to use a filter value 
that is a few years old as a predictor.

4.2 Prediction performance of models
Predictions were made using the simple average, moving average, exponentially weighted 
moving average, and Hodrick-Prescott filters.

Construction of a simple average over a period t=1, …, T is a straightforward matter.  
However, as noted above, there is no unique moving average, exponential smoother or 
Hodrick-Prescott filter.  Parameters must be selected to implement those methods.  For a 
moving average, the averaging window needs to be selected.  In the case of exponential 
smoothing, the parameter α, which corresponds to the degree of weight given to more recent 
observations in the averaging process, must be selected.  

Common sense would suggest that the value of α in an exponential smoothing should not be 
less than the inverse of the number of observations;  otherwise we weight recent observations 
less than observations in the more distant past.   But theory does not in general provide a 
strong guide as to the appropriate values of these parameters.  Consequently we have 
considered a range of values.  This means that we have several forecasting models to 
consider:  one “simple average”, several “equal-weighted moving average” models, several 
“exponentially weighted moving average” models based on different values of α, and several 
HP filters based on different lag lengths.18

Figure 4.1 plots excess returns and trend excess returns calculated using the Hodrick-Prescott 
filter.  The volatility of the excess returns is such that, on this scale, it is difficult to discern 
much movement at all in the trend series.

Figure 4.2 plots the trend series along with the arithmetic average of excess returns in the 
Officer series.  Certainly the trend estimates are strongly suggestive of a downward move 
after the late 1950s.

  
17 Pedersen (2001) describes the filter as one “which removes a smooth trend as one would draw it with a free hand drawing”.
18 The results reported here all employ a λ of 1,600.  Calculations were also carried out with λ = 6,400, but the forecast 

performance was inferior.
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Figure 4.1
Excess returns and Hodrick-Prescott trend estimate of excess returns
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Figure 4.2
Average excess returns and Hodrick-Prescott trend estimate of excess returns
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One commonly used method to compare the performance of alternative forecasting models is 
to compare the mean square errors of forecasts.  Where the intention is to infer which model 
might perform best in the future, it is generally accepted that the evaluations should be 
performed on out of sample forecast performance.  This means that when we estimate a model 
to forecast the parameter of interest in time period t, we estimate the parameters of that model 
using only information that is available up to t-1.
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We considered a series of rolling forecasts, and evaluate the performance of each model.  The 
Officer dataset was used for this purpose.  The first prediction is for 1946, making use of 
excess returns data to the end of 1945.  These predictions are then compared with the 
observed excess return for 1946 and the squared forecast error is calculated.  The process is 
repeated, producing predictions for 1947 using data available up to the end of 1946 and again 
the squared forecast errors are calculated.  And the process is repeated year by year until data 
to the end of 2003 is used to produce a forecast for 2004 and to calculate a squared forecast 
error.19 These forecast errors are then averaged over the period 1970 to 2004 to generate 
mean squared errors (MSEs) for each prediction method.  These mean square errors are 
reported in Table 4.1, along with the latest estimates of the market risk premium.

Table 4.1
Mean square forecast errors

A striking feature of the table is that the simple average is one of the better performing out-of-
sample forecasting methods.  Over the sample considered, it is matched only by the trend 
estimates produced by the Hodrick-Prescott filter at quite long lags.  Moving averages 
perform a little worse and exponential smoothing performs worst of all.

The lowest prediction of the contemporary market risk premium is 5.7 per cent, based on a 
10-year lagged value from the Hodrick Prescott filter.  The highest prediction is 7.4 per cent, 
coming from the simple average of past excess returns.

  
19 Data to the end of 2004 could be used to calculate a 2005 forecast, but we are unable to calculate the forecast error for 2005 

until the actual outcome is known.

Forecasting model Mean square error Latest forecast

Simple average 1883 onward 575 7.4
Moving averages:

25 year 594 5.9
50 year 582 6.6

Exponential smoothing
α = 0.1 627 6.2
α = 0.05 598 6.3
α = 0.04 592 6.4
α = 0.03 586 6.6
α = 0.02 581 6.9

Hodrick Prescott filter
value last year 663 5.9
value 5 years ago 633 5.8
value 10 years ago 604 5.7
value 15 years ago 585 5.8
value 20 years ago 573 6.1
value 25 years ago 566 6.2



The Market Risk Premium for Australian Regulatory Decisions Page 34

The SA Centre for Economic Studies July 2006

5. The influence of taxes on investors, transaction costs and 
liquidity premiums

The accumulation indexes that are used to measure equity returns make no allowance for 
personal income taxation, and make no allowance for transaction costs and illiquidity.20 But 
for a risk averse investor, the relevant comparison of expected returns on equities and bonds 
must be a comparison after taxes and transaction costs and any costs associated with 
illiquidity − i.e. the investor will want to compare net returns rather than gross returns.

If the expected rates of taxes and transaction costs on equities and bonds are the same, then 
there will be no tax-induced difference in gross and net expected returns.  But if they differ, 
the equity premium gross of taxes and transaction costs will differ from the equity premium 
measured on a net basis.  Furthermore, if there are changes over time in the difference 
between, on the one hand, taxes and transaction costs on equities, and, on the other hand, 
taxes and transaction costs on bonds, then those changes will cause the gross equity premium 
to vary even if the net equity premium stays constant.

If one regards the equity premium as a quantity which derives from individuals’ risk aversion 
− albeit that individuals’ often delegate asset management to intermediaries such as 
superannuation funds − then it will arguably be more fruitful to regard the gross equity 
premium as an amalgam of a net equity premium, differences in personal income taxes across 
bonds and equities, and differences in transaction costs across bonds and equities.  In this 
approach, an estimate of the gross equity premium would be arrived at by estimating the net 
equity premium, and the net differences in personal taxes and taxation costs across equities 
and bonds, and then summing them.  To do this, it is necessary to make estimates of the 
differences in personal taxes and transaction costs across the two asset classes.

5.1 Excess taxes
The excess of taxes on equities over taxes on bonds can be expected to flow into the equity 
premium.  Experimental estimates of this excess were made for the period 1974 to 2004 using 
fairly simple scenarios for both the holdings of superannuation funds and holdings of direct 
personal equity investment.  Basically this involved:

• assuming an after-tax equity premium of 6 per cent for investments through each of 
these two vehicles;

• calculating the after-tax return on a bond using the actual bond rate (which is pre-
tax);

• setting the after-tax ex ante equity return equal to the after-tax bond return plus 6 per 
cent;

• calculating the after-tax dividend yield by deducting an estimate of tax from reported 
dividend yield figures;

• calculating the after-tax franking credit yield by deducting an estimate of tax from an 
estimated 0.6 per cent gross franking credit value;

• deducting the after-tax dividend yield and franking credit yield from the after-tax 
equity return, which yields an after-tax capital gain;

  
20 The indexes are constructed on an after company tax basis.



The Market Risk Premium for Australian Regulatory Decisions Page 35

The SA Centre for Economic Studies July 2006

• applying a tax formula, including an inflation component, to derive a pre-tax capital 
gain;

• adding to the pre-tax capital gain the pre-tax dividend yield and the pre-tax franking 
credit yield to get a pre-tax equity rate of return; and

• deducting the pre-tax bond yield from this pre-tax equity rate of return to get a pre-
tax equity premium.

This exercise was conducted separately both for investment through superannuation funds and 
for direct personal investment.  The results are shown in Figure 5.1, and as can be seen there 
are some significant differences in the results for the two different investment channels.  
These differences relate mainly to differences in tax rates and different timing in the variation 
of tax rates over time.  It is notable that early in the period the excess tended to be negative, 
meaning that the tax treatment of equities was in absolute terms more favourable than the 
treatment of bonds − which was due mainly to the fact that the inflation-compensation 
component of bond returns was fully taxable whereas the inflation-compensation component 
of equity returns was not if it was delivered as a capital gain.  Super funds were not taxed on 
their investment returns at all until the late 1980s.21 The differentials have also been affected 
by the introduction of capital gains tax, dividend imputation, and changes to the capital gains 
tax.

Figure 5.1
Excess of investor’s tax on equities over tax on bonds – alternative investment channels
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The experimental estimates of the excess tax on equities were combined to form a weighted 
average.  The weights were calculated by adding together average direct equity holdings of 
super funds and life offices and of households for the period 1988 to 2004, and then 
calculating the proportions in, on the one hand, superannuation funds and life offices and, on 

  
21 There have at times been regulations on the portfolio allocations of super funds and life funds, which could be viewed as quasi-

taxes − e.g. the so-called 30/20 ratio, introduced in the early 1960s and operating , which provided strong incentives for life and 
superannuation offices to allocate at least 20 per cent of their portfolios to Commonwealth government securities (see Grant 
1974  pp. 183-185 and Covick and Lewis (1993) p. 166).
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the other, households.  It must be acknowledged that this procedure is very rough, and it 
would be better to have a more sophisticated weighting pattern that allowed for changes over 
time and, moreover, allowed for different allocations of bonds and equities across the two 
investment channels, but the data that would be necessary to do this are not readily available.  
No allowance has been made for switching in investment channels, although one would 
expect investors to take advantage of changing patterns of tax advantages by adjusting their 
holdings.22 The resulting weighted average is shown in Figure x.2.  It indicates that over the 
period 1974 to 2004 the tax rate payable on equities may have shifted up by about 1 per cent 
relative to the tax rate payable on bonds.  However, it must be emphasised that the estimate is 
very much of an experimental character and is really only a first step towards resolving the 
influence of changes in tax arrangements on gross excess returns.

Figure 5.2
Excess of investor’s tax on equities over tax on bonds – weighted across investment channels
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5.2 Transaction costs and liquidity premiums
In pure risk-based pricing models for the equity premium transaction costs are ignored.  It is 
assumed that investors costlessly maintain an optimal portfolio structure − i.e.. one in which 
at all times diversifiable risk is entirely diversified away and the quantum of systematic risk is 
attuned exactly in line with the investor’s preferences.  This is achieved through instantaneous 
portfolio rebalancing.  A model resting on these assumptions will be satisfactory so long as 
they are a reasonable approximation to the reality.  However, recent work suggests that 
transaction costs are significant and that their implications need more explicit attention.  A 
pathbreaking paper in this regard is Constantinides (1986).

  
22 Drake (1985) argues that “differences in the tax treatment of dividends are such that the individual Australian shareholder fares 

worse than the life office, the superannuation funds and the overseas investor”, and offers this as one explanation for a substantial 
decline in household equity ownership between 1950 and 1980 (pp. 284-286).



The Market Risk Premium for Australian Regulatory Decisions Page 37

The SA Centre for Economic Studies July 2006

Constantinides points out that although there is a demand for transactions arising from 
emerging imbalances in investors’ portfolios, the transactions will be enacted only once the 
imbalance is sufficiently large, and the associated cost to the investor sufficiently large, to 
warrant the costs that are incurred when rebalancing transactions are made.  When the 
investor carries out these transactions a cost is incurred.  But until the investor makes the 
transaction, there is a cost to the investor associated with holding a sub-optimal portfolio;  
Constantinides describes this as a “liquidity premium”.23 Thus the investor will factor 
transaction costs and a liquidity premium into his costs and, because these costs are 
unavoidable for investors, they will need to be incorporated into the gross equity premium.

At least two recent papers argue that transaction costs and/or a liquidity premium go some 
way, and indeed a long way, to resolving the “equity premium puzzle”.  In a study of US 
historical data McGrattan and Prescott (2003) use equity mutual-fund costs as a measure of 
the costs of holding a diversified equity portfolio.  A chart in their article shows these costs 
varying between about 1¼ and 2½ per cent per annum over the period 1980 to 2000.24 An 
interesting feature of the data presented by McGrattan and Prescott, of limited relevance to 
their analysis but highly relevant to this analysis, is that equity mutual-fund costs declined 
substantially over the period 1980 to 2000.  In recent work Swan (2005) argues that there is 
an “invisible cost” in the form of substantial gains from trading equities (i.e. portfolio 
rebalancing) that are forgone because of transaction costs, and that these invisible costs are 
“15 times higher than all the observed costs of trading, such as spreads and commissions, 
combined” [p. 3].

If these authors are correct in their assessments, it seems likely that changes in these costs 
over time will also have implications for the gross equity premium.

It is helpful at this point to consider the demand for transactions in an asset market using a 
diagrammatic analysis.  This analysis will serve to illustrate the link between transaction 
prices, the quantity of transactions, transaction costs, and the liquidity premium.  A key point 
is that the costs to an individual of holding an asset include both transaction costs and a 
“liquidity premium” for portfolio balances that are not corrected.

Transaction costs reflect both price and quantity elements.  The price of a transaction is 
typically measured in “round-trip” terms, defined as the total cost of buying and selling a 
security as a proportion of the its value.  Fisher (1994) models transaction costs with a bid-ask 
spread, and argues that three elements of the bid-ask spread need to be captured:  (1) the 
market buy/sell quotations, (2) broker commission plus taxes, and (3) the costs of gathering 
information, market impact and/or management fees.  Transaction quantities can be captured 
with a “turnover ratio”, which is the ratio of the value of trades in a year to market 
capitalisation.25

Figure 5.3 presents a hypothetical demand schedule for equity transactions.  The schedule 
shows that with a round-trip transaction cost of 6 per cent there will be a turnover rate of 11.6 
per cent.  If the round-trip transaction cost falls to 3 per cent, turnover rises to 26.8 per cent.  

  
23 Constantinides simulations on US historical data lead him to conclude that “a small  liquidity premium is sufficient to 

compensate an investor for deviating significantly from the target portfolio proportions” [p. 843].
24 McGrattan and Prescott argue that in fact equity mutual-fund costs understate diversification costs because they do not include 

brokerage charges.
25 In some analyses numbers of trades are modelled.
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Figure 5.3
The demand for securities transactions
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Transaction costs are given by the product of the transaction price and the transaction volume.  
At a transaction price of 5 per cent, the turnover rate is 11.6 per cent and therefore the 
transaction costs are 0.7 per cent per annum.  At a transaction price of 2.5 per cent, the 
turnover rates is 26.8 per cent and therefore the transaction costs are 0.8 per cent per annum.  
It is notable, and counterintuitive, that the reduction in the round-trip price of a transaction 
has actually led to an increase in transaction costs!  The reason is that in the example the 
demand for transactions has an elasticity greater than unity − an elasticity of 1.2.

It is important to understand that although transaction costs have risen, the investor is not 
worse off.  The area under the schedule and to the right of the investor’s turnover rate is the 
required liquidity premium, and when the turnover rises this falls.  The investor could have 
maintained his turnover rate at 14 per cent when the transaction price fell from 5 per cent to 
2.5 per cent, and would have enjoyed a reduction in transaction costs of 0.35 per cent.  But the 
investor actually increased his turnover, taking advantage of the lower price.  Thus the gain to 
the investor is actually equal to the shaded area in Figure 5.4.

The challenge then is to assemble the data necessary to estimate how the liquidity premium 
has changed in Australia.  The data on Australian transaction costs over time are in fact very 
limited.  In a study of a large dataset of stock market transactions, Swan (1994) estimated that 
the round-trip transaction cost on the ASX in 1993-94 was 2.4 per cent, made up of a round-
trip brokerage charge of 0.8 per cent, a bid-ask spread of 1 per cent, and round-trip stamp duty 
of 0.6 per cent.26 Thus stamp duties accounted for about 25 per cent of transaction costs.  But 
as recently as 1982 (the beginning of Swan’s study period) transaction costs were estimated to 
account for just 9 per cent of transaction costs, implying an average round trip transaction cost 
of 6.7 per cent.  Clearly there was a large fall in round-trip costs over the period 1982 to 1994 
(the deregulation of brokerage in 1984 and the introduction of new information technologies 
are likely explanations).

  
26 The estimate has a heavy weighting of institutional clients, and the costs would be larger for small investors.  
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Figure 5.4
The reduction in the liquidity premium
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In addition, there have almost certainly been further falls since 1994.  Stamp duties were 
halved (to 0.3 per cent on a round-trip) in 1995 and then abolished in 2000.  There have 
potentially been some technology related reductions too and also a likely reduction in the bid-
ask spread as market turnover has risen (from under 30 per cent in 1994 to around 50 per cent 
in recent years − see ASX data).

An estimate was made of the reduction in the liquidity premium using the following 
assumptions:

• round-trip transaction costs 6.7 per cent in 1982;

• round-trip transaction costs then declining linearly to reach 2.4 per cent in 1994;

• round-trip transaction costs then declining to 2.1 per cent in 1995; and

• round-trip transaction costs then declining to 1.8 per cent in 2000.

The transaction price movements implied in this schedule were applied, year by year, to the 
turnover rate on the Australian Stock Exchange to get a series of annual changes in the 
liquidity premium for equities.  The calculations are shown in Table 5.1.  The conclusion is 
that between 1982 and 2000 the liquidity premium on equities fell by about 1.1 per cent, due 
to the influence of lower transaction costs and improvements in portfolio rebalancing.

To calculate the effect of reductions in the price of transactions on excess returns, one would 
ideally make allowance for the impact of changed transaction prices on liquidity premia in the 
bond market.  This has not been done because the data that are needed to do so are not readily 
available.  However, there are grounds to believe that transaction prices in the bond market 
are and have for long been significantly lower in the bond market than the equity market and 
that therefore the gains to be had from small price reductions are considerably smaller than in 
the equity market.
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Table 5.1
Change in annual liquidity premium for Australian equities 1982 to 2004

Year to Dec

Market 
capitalisation 

($bn)
Turnover

($bn)
Turnover

rate
Round-trip

cost (%)

Annual change 
in % annual 

liquidity 
premium

Cumulative change 
in % annual 

liquidity premium
1982 54* 7* 0.13* 6.67 #N/A
1983 60* 12* 0.21* 6.31 -0.04 -0.04
1984 84* 15* 0.18* 5.96 -0.07 -0.12
1985 130* 31* 0.24* 5.60 -0.07 -0.18
1986 180 40 0.22 5.24 0.00 -0.18
1987 191 81 0.43 4.89 -0.08 -0.26
1988 215 49 0.23 4.53 -0.15 -0.41
1989 230 57 0.25 4.18 -0.08 -0.49
1990 197 51 0.26 3.82 -0.09 -0.58
1991 261 60 0.23 3.47 -0.09 -0.67
1992 389 62 0.16 3.11 -0.08 -0.76
1993 477 100 0.21 2.76 -0.06 -0.81
1994 450 129 0.29 2.40 -0.07 -0.89
1995 546 133 0.24 2.10 -0.09 -0.97
1996 615 185 0.30 2.10 0.00 -0.97
1997 777 229 0.30 2.10 0.00 -0.97
1998 879 256 0.29 2.10 0.00 -0.97
1999 845 307 0.36 2.10 0.00 -0.97
2000 1,006 391 0.39 1.80 -0.11 -1.08
2001 1,110 476 0.43 1.80 0.00 -1.08
2002 994 543 0.55 1.80 0.00 -1.08
2003 1,099 567 0.52 1.80 0.00 -1.08
2004 1,326 709 0.53 1.80 0.00 -1.08

Note: * figures relate to year ending in June of the following year (i.e. 1982 refers to 1982-83 data).
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6. Potential biases in excess return series
Before inferring anything about the market risk premium from these averages of historic 
excess returns, one should first ask whether there are any obvious biases which might affect 
them.

There are two main types of bias which are of concern − unanticipated changes in the cost of 
capital and measurement problems in indexes..

6.1 Changes in the cost of capital
If an investor’s rate of return for a particular type of asset falls, while the earnings outlook 
remain constant, then the investor’s valuation of the asset will rise.   The return in that period 
will then be boosted.  As a consequence, the average of historic excess returns will then be 
boosted in periods when there are unanticipated reductions in required rates of return (and 
conversely depressed in periods when there are increases in investor’s required rates of 
return).  Changes that are anticipated should have affected excess returns at the time that they 
came into anticipation, so changes that occur but were already anticipated have no effect.  

If one conceives of an equity return as comprising five element − a real interest component, 
an inflation-compensation component, a market risk premium, a tax component and a 
liquidity premium − then unanticipated changes in these elements may affect excess returns.  
Over the period 1974, the influence of these factors may be summarised as follows.

i)  One possible influence − as has been argued in respect of the US by Fama and French 
(2002) − is that there has been a long term downward move in discount rates, that this 
has led to unanticipated capital gains on stocks, and that average stock returns over the 
last half century have therefore been higher than expected.  If that is so, then excess 
returns would incorporate biases.

Figure 6.1 shows Australian real long term interest rates over the last 30 years, and it is 
clear that there has been a downward move.  Roughly, real interest rates fell from 
around 5 per cent in the mid 1970s to about 3½ by 2004.

A similar decline can be seen in dividend yields (including franking credits).  Dividend 
yields are only a part of equity yields.  While it is possible that there has been a 
corresponding increase in ex ante capital gains, it is by no means clear that this is so.

ii)  While it seems quite likely that the pure risk premium has changed over time − for 
instance because of changes in perceived or actual levels of risk and because of changes 
in investors’ attitudes to risk − the measurement difficulties with identifying the pure 
risk premium make it difficult to quantify this. 
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Figure 6.1
Australian real long term interest rates
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Note: These real interest rates are calculated by deducting estimates of inflation expectations from Government bond 
rates.  The data are calculated as (1+nominal bond rate)/(1+inflation expectation)-1.  The bond rate and the 
inflation expectation are measured with data from Australian Bureau of Statistics (2005), which is based on the 
Commonwealth Treasury’s TRYM model.  The bond rate is “Interest Rate: 10 Year Bonds” taken from Table 31, 
and the inflation expectation is “Full Information Inflation Expectations” taken from Table 23.  The inflation 
expectation is measured by the difference between the yield on non-indexed and indexed 10-year Treasury bonds 
(Commonwealth Treasury 1996).

iii)  There have been changes to taxation rates, to inflation rates (which interact with tax 
rates) and to investment channels which make it difficult confidently to say much about 
the impact of tax changes.  In an earlier version of this report emphasis was placed on 
the introduction of dividend imputation and its impact on excess returns, but this 
approach neglected other changes such as the introduction of capital gains tax which 
potentially had a negative effect on excess returns.  It is very uncertain what the overall 
impact has been, but the experimental estimates in the previous section suggest that tax 
changes may have been of the order of a 1 per cent increase.

iv)  It has been argued in the previous section that the liquidity premium for holding 
equities has almost certainly fallen − by about 1 per cent it is estimated.

The influences (i), (iii) and (iv), taken together, have a downward impact of about 1½ per cent 
on the gross equity return.  Assuming (purely for the purposes of this rough arithmetic, the 
exact number is not particularly important) that the market risk premium was 6 per cent 
throughout the period, then the expected equity return fell 1.5 per cent from (say) 10.5 per 
cent to 9 per cent.  Such a change would, on an unchanged earning outlook, boost stock 
values by about 15 per cent.  Thus, over the period 1974 to 2004, this might have added 
something like ½ per cent per annum to excess returns.  However, the uncertainties around 
this are obviously large.

6.2 Mismeasurement in stock indexes
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A second type of bias is the potential for bias in the actual equity accumulation indexes, for 
instance so-called “success” and “survivorship” biases, by which is meant the tendency to 
include disproportionately investments that succeed or survive.  To avoid bias, excess return 
calculations should be representative of what an investor might have done when making an 
investment.  The index portfolio that results will be different from one based on relative 
performance later on:  investments that do well will be relatively more important later on and 
investments that did poorly will be relatively less important.27

However, while these flaws have been found to be serious in various overseas studies, they 
are less likely to be a problem with the data sets under review here.  The early period of the 
Officer data comes from indices assembled by Lamberton (1958).  Lamberton was certainly 
aware of the need to avoid the selection biases that can arise and he went to some length to do 
so (see pp. 49-50 of his work).  Although he was at pains to point out that his work had not 
perfectly addressed every possible problem, there is no reason to believe that it contained 
large biases.

Even if stock indices are well constructed, it is possible that success biases affect countries as 
a whole.  For instance, if all Australian investments have succeeded more than expected, this 
would mean that realised excess returns are still a biased estimate of the market risk premium.  
Success and survival bias at the country level cannot easily be estimated.28

Taken together, it seems likely that the introduction of dividend imputation and declining 
discount rates have combined to add about 1 percentage points per annum to Australian 
excess returns over the period 1974 to 2003.  This would suggest that the average of excess 
returns over this period, which is around 5½ to 6 per cent depending on the dataset, is 
upward-biased by about 1 per cent as an estimator of the market risk premium.  Thus central 
estimates of the 1-year equity premium over the last 30 years are in the 4½ to 5 per cent 
range.  The most precise estimate has a 95 per cent confidence interval of approximately plus 
or minus 2 percentage points.

  
27 For discussion see Dimson, Marsh and Staunton (2002), especially Chapter 3.
28 Recent theoretical work by Li and Xu (2002) suggests that survival biases cannot be particularly large over long periods.  In 

their study of the issue Brown, Goetzmann and Ross (1995) noted that, inter alia, the Amsterdam, Berlin, Brussels, 
Copenhagen, Frankfort, Madrid and Tokyo stock exchanges have had trading interruptions since 1901.  Data assembled by 
Dimson, Marsh  and Staunton (2002) show that average excess returns over the 20th century are not consistently lower for this 
group than for among the English-speaking countries.  Yet these data are potentially misleading.  In countries where there was 
significant unanticipated inflation (e.g. countries that had hyperinflations), nominal bond yields will be grossly inadequate as 
measures of expected risk free rates of return.
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Appendix A

Multi-period returns

When it is necessary to estimate a 1-period return, the arithmetic average of a sample of 1-
period returns from a stable distribution gives an unbiased estimate of the mean.  But the 
precision of an estimate of the mean depends on the number of observations in the sample.  If 
returns are available over shorter periods then a larger sample can be obtained by taking 
observations over shorter periods.  The challenge then is to build up from those short 1-period 
observations to a period which is of greater interest.  An obvious example is the case of 
building up an estimate of 1-year expected returns from monthly or quarterly data.

An important point in such an exercise is that autocorrelation in the data can seriously affect 
such an exercise.  In Section A.1 the point is illustrated with a simple example in which a 2-
year return is considered as the outcome of two 1-year returns.  It is shown that the stochastic 
properties of the 1-year returns affect the expected 2-year rate of return.

In Section A.2 a more general case is considered in which returns are distributed lognormally 
at all return lengths.  It is shown why lognormality is a more reasonable assumption than 
normality.  Then the relation between H-period expected returns and 1-period expected 
returns is explored, including in the presence of autocorrelation.

Section A.2 provides exact relations between 1-period and H-period returns when the 
parameters of the underlying probability distributions are known.  But usually those 
parameters are not known and must be estimated.  For instance, this study is fundamentally 
concerned with returns to risk capital in Australia, and certainly the underlying probability 
distributions for returns are not known with certainty. Studies by Blume (1974), Cooper 
(1996) and Jacquier, Kane and Marcus (2002, 2003) have shown that unbiased estimates of 1-
period returns do not generally produce unbiased estimates of H-period returns.  In Section 
A.3 these bias issues and possible adjustments are considered. 

A.1 Numerical example
In this section a 2-year return is decomposed into two 1-year returns and the relationship 
between 1-year and 2-year returns is explored.  The numerical example draws on Campbell 
(2001), but a wider range of issues is illustrated here.

The discussion commences with a consideration of deterministic returns, then turns to a 
consideration of stochastic returns and the implications for the distribution of returns, and 
then unifies the two by introducing autocorrelation as a measure of the extent of determinism 
in returns.
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Deterministic returns
First, take the deterministic case in which returns are known with certainty. Suppose an 
investor knows that he can make an investment in year 1 and earn a grow return of 1.500, 
make an investment in year 2 and earn a gross rate of return of 0.667 (ie. a net loss of 1/3).  
Various aspects of the return structure of this investment are summarised in  “Deterministic 
case” in Table A.1.

Table A.1
Expected 2-year returns under alternative stochastic properties of 1-year returns

Actual returns (R)

Case Probability Year 1 Year 2 2 Years

Arithmetic 
average of 1-year 

actual returns

Deterministic case
Scenario: 1.00 1.500 0.667 1.000 1.083
Expected value: 1.500 0.667 1.000
Stochastic independent case
Scenario 1 0.25 1.500 1.500 2.250 1.500
Scenario 2 0.25 1.500 0.667 1.000 1.083
Scenario 3 0.25 0.667 1.500 1.000 1.083
Scenario 4 0.25 0.667 0.667 0.444 0.667
Expected value 1.083 1.083 1.174

Stochastic perfect dependence case
Scenario 1 0.00 1.500 1.500 2.250 1.500
Scenario 2 0.50 1.500 0.667 1.000 1.083
Scenario 3 0.50 0.667 1.500 1.000 1.083
Scenario 4 0.00 0.667 0.667 0.444 0.667
Expected value 1.083 1.083 1.000

Stochastic imperfect dependence case
Scenario 1 0.10 1.500 1.500 2.250 1.500
Scenario 2 0.40 1.500 0.667 1.000 1.083
Scenario 3 0.40 0.667 1.500 1.000 1.083
Scenario 4 0.10 0.667 0.667 0.444 0.667
Expected value 1.083 1.083 1.069

The 2-year gross rate of return is 1.000, which is equal to the product of the two 1-year gross 
rates of return (1.000 = 1.500 x 0.667).

The expected value of year 1 returns is 1.500, the expected value of the year 2 return is minus 
0.667, and the expected value of the 2-year return is 1.000.

The arithmetic average of the 1-year net rates of return is 1.083 per cent.  However, if this 
arithmetic average is compounded it does not give the 2-year return (compounding the 
arithmetic average twice gives a gross return of 1.174 = 1.0833 x 1.0833).

The geometric 1-year average return is, by definition, the square root of the 2-year return 
(alternatively, the geometric average is that return which when compounded gives the 2-year 
return).  Thus the geometric average return is 1.000 per annum.  

What is the cost of capital?  Remember that there is (by assumption) no uncertainty about 
these returns.  The Year 1 cost of capital is 1.500 and the Year 2 cost of capital is 0.667.  The 
2-year cost of capital is 1.000.
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Stochastic independent returns
Now consider the case in which the 1-year returns and the 2-year return are not deterministic 
but are in fact random (or “stochastic”).  Suppose that there are two possible outcomes in year 
1 and year 2, a return of 1.500 and a return of 0.667, each with a probability of 0.5, and that 
the outcomes are independent of each other.  “Independent” in this context means that the 
probability of a  particular outcome in year 2 is the same regardless of what happened in year 
1 (and vice versa).

In this case there are four possible 2-year outcomes − (1.500, 1.500), (1.500, 0.667), (0.667, 
1.500) and (0.667, 0.667).  The respective 2-year returns are 2.250, 1.000, 1.000 and 0.444 
per cent (see Table A.1).

The probability of each outcome is 0.5 x 0.5 = 0.25.  This allows us to take the expectation 
across these outcomes, to calculate expected returns for year 1, year 2 and 2 years.  The 
expected returns for years 1 and 2 are 1.083, and the expected 2-year return is 1.174 per cent.  
Note that, unlike the deterministic case, this expected 2-year return is equal to the product of 
the expected 1-year returns.

Stochastic perfectly dependent returns
Now consider the case in which the 1-year returns are random but their expected values are 
dependent (in which case we say that returns are “autocorrelated”).  Take the case where the 
return in year 1 is random, and that there are two possible returns: 1.500 and 0.667, each with 
a probability of 0.5.  But now assume that the outcome in year 2 depends on the outcome in 
year 1.

Consider a very strong form of dependence in which (a) the probability of a 1.500 return in 
year 2 is 0.0 if there was a 1.500 return in year 1, and 1.0 if there was a 0.667 return in year 1 
and (b) the probability of a 0.667 return in year 2 is 1.0 if there was a 1.500 return in year 1, 
and 0.0 if there was a 0.667 return in year 1.

This means that the probabilities attached to the 4 outcomes are:  Prob(Outcome 1) = 0.0; 
Prob(Outcome 2) = 0.5; Prob(Outcome 3) = 0.5; and Prob(Outcome 4) = 0.0 (meaning that 
Outcomes 1 and 4 definitely will not happen).

These probabilities can then be applied to the returns associated with each outcome to get 
expected values.  The expected 1-year returns are 1.083 (the same as in the purely stochastic 
case) but the expected 2-year return is 1.000 (not the same as the stochastic case, but the same 
as the deterministic case).

Autocorrelated and stochastic returns
The “stochastic independent returns” and “stochastic perfectly dependent returns” cases are at 
opposite ends of a spectrum.  A more likely situation is one in which there is imperfect 
dependence in returns.

Suppose that the possible returns in years 1 and 2 are still  1.500 and 0.667.  In year 1 the 
probability of each is 0.5.  But in year 2 (a) the probability of a 1.500 return is 0.2 if there was 
a 1.500 return in year 1, and 0.8 if there was a 0.667 return in year 1 and (b) the probability of 
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a 0.667 return is 0.8 if there was a 1.500 return in year 1, and 0.2 if there was a 0.667 return in 
year 1.

This means that the probabilities of the 4 possible outcomes are:  Prob(Outcome 1) = 0.1; 
Prob(Outcome 2) = 0.4; Prob(Outcome 3) = 0.4; and Prob(Outcome 4) = 0.1.

The expected 1-year returns are still 1.083.  The expected 2-year return is now 1.069.  This is 
greater than the expected 2-year return of 1.000 under full dependence but less than the 
expected 2-year return of 1.174 under independence (no autocorrelation).

Implications
All these comments relate of course to a very simple example.  But the example does 
illustrate that the connection between a 1-period expected return and a 2-period expected 
return depends on the extent of any dependence in the sequence of returns.  If the returns are 
stochastic and independent, the 1-period return can be compounded to give the 2-period 
expected return.  But if the returns are not independent − in particular if there is
autocorrelation − then compounding the 1-period expected returns will overstate the 2-period 
expected return.

A.2 Multi-period returns under lognormality
Consider an H-period gross return )(HR , made up of H 1-period returns HiRi ...,,1, = .  The 
relationship between )(HR and the iR is:

∏
=

=
H

i
iRHR

1

)( (A.1)

By taking logs, the multiplicative process in Equation A.1 can be converted to an additive 
process:

∑
=

=
H

i
iRHR

1

ln)(ln (A.2)

If we make the assumption that the 1-period returns are normally distributed, it follows that 
they will not be normally distributed for any return length other than 1 period.  Taking the 
case of H = 2, for instance,

2121

21

1

)1)(1()2(1

RRRR

RRR

+++=

++=+

While the terms 1R and 2R will be normally distributed, the term 21RR will not be, and 
consequently )2(R will not be.  This means that while there might be some length of period for 
which normality holds, it cannot be expected to hold in general.  There is therefore an 
internally contradictory character to an assumption of normality in returns.
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On the other hand, a sum of normal random variables is itself normal.  The log of the H-
period gross return is simply the sum of H 1-period gross returns.  So if the 1-period returns 
are lognormal, the H -period return is lognormal too.

Lognormality of returns is therefore a characteristic which could apply across all return period 
lengths (whether it does apply is of course an empirical question).  It is also consistent with 
the multiplicative process for aggregating sequential returns.  Lognormality is therefore a 
much better candidate than normality for the task of modelling returns.  Jacquier, Kane and 
Marcus (2002) set out some of the properties of lognormally distributed returns and consider 
the structure of expected returns over different horizons, and these are now summarised and 
developed.

The lognormal distribution is asymmetric.  If R is lognormally distributed and Rln has mean 
µ and variance 2σ , then the expected value of R is given by

)2/( 2
)( σµ+= eRE (A.3)

Using )(Hµ to designate the mean of )(ln HR and 2)(Hσ to designate its variance, then by 
substitution in Equation A.3

)2/)()(( 2
))(( HHeHRE σµ += (A.4)

Two important results from mathematical statistics are that if NXXX ...,,, 21 are random 
variables each with mean iX and variance )( iXVar then the sum of the random variables Y is 
also a random variable with the following properties:29

a) The expected value of Y is the sum of the each of the expected values of iX

)()(
1

∑
=

=
N

i
iXEYE

b) The variance of Y is the sum of the variances and covariances of iX

),cov()(
1 1

∑∑
= =

=
N

i

N

j
ji XXYVar

This then allows a consideration of the implications for ))(( HRE of different assumptions 
about the distribution of the 1-period returns iR .

Case 1:  One possibility is that the iR are independent and identically distributed (i.i.d.).  In 
that case, µµ HH =)( and 22)( σσ HH = .  These can be incorporated into Equation 5.5 to give 
the standard result that the expected value of the H-period return is equal to the expected 
value of the 1-period return raised to the Hth power:

  
29 For details see Wackerly, Mendenhall and Scheaffer (2002) pp. 255-258.
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Case 2:  Another possibility is that the 1-period returns are autocorrelated.  For instance, it is 
often argued that equity returns exhibit a form of autocorrelation known as “mean reversion”, 
which means that above average returns tend to be followed by below average returns.  Where 
mean reversion exists, 22)( σσ HH < .  Define the “variance ratio” as

2

2)()(
σ

σ
H

HHVR = (A.6)

in which case 22 )()( σσ HHVRH = .  This can then be incorporated into Equation 5.5 to give
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The H-period expected return is thus the compound of a term comprising the 1-period 
expected return and an autocorrelation adjustment.  In the case where 1)( =HVR , which means 
there is no autocorrelation, the adjustment factor equals 1, and thus has no effect.  In the case 
where 0)( =HVR , which means that the H-period return is deterministic even though 1-period 
returns are stochastic, the expected value of the H-period return is

H

H

HHVRH

e

e

eHRE

][

))(( )2/)(( 2

µ

µ

σµ

=

=

= +

(A.8)

A.3 Estimating expected multi-period returns
The discussion in Section A.2 produces exact analytical relations between 1-period expected 
returns and H-period expected returns, making use of the parameters of underlying return 
distributions.  However, in practice the parameters of the return distribution are not known 
with certainty and must be estimated.  While it is tempting to think that unbiased parameter 
estimates will produce unbiased estimates of expected H-period returns, this is generally not 
the case.

For the case where a series of returns is assumed to be independently, identically normally 
distributed, Blume (1974) illustrates that while the sample average will be an unbiased 
estimate of the 1-period expected return, raising it to the Hth power will produce an upward 
biased estimate of the expected H-period return.  On the other hand the sample geometric 
average raised to the Hth power will produce a downward biased estimate of the expected H-
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period return.  He proposes two alternative estimators, each of which is based on a weighted 
average of the arithmetic and geometric sample averages.

Cooper (1996) considers the biases that can arise when estimating multi-period discount 
factors.

Jacquier, Kane and Marcus (2003) consider the estimation of multi-period expected returns 
under lognormality. In particular, they are concerned with the consequences of estimation 
error in the )2/( 2σµ HHe + component of Equation A.5 (but their concerns also apply to Equation 
A.7).  Their concern is that while errors in unbiased estimates of µ and 2σ will be 
symmetrical, errors in the exponential of them will generally be asymmetrical, which means 
that estimates of expected multi-period returns will be upward biased.  They focus on the 
consequences of error in estimates of µ , ignoring the consequences of error in estimates of 

2σ on the ground that 2σ can be estimated arbitrarily accurately by increasing sampling 
frequency.30 With a stable lognormal distribution it is possible to derive the exact bias in the 
estimate of an expected H-period return where the 1-period return is estimated from a sample 
of size T.

Take the case where R is identically (but not independently) lognormally distributed:

),(~ln 2σµNR

Now consider a sample of T observations of R .  Each iR can be expressed as:

iiR σεµ +=ln

where )1,0(~ Niε .

The following estimator µ̂ is an unbiased estimate of µ
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The variance of µ̂ is T/2σ .  Therefore we can write T/ˆ ωσµµ += where )1,0(~ Nω .

Let )(HA be the arithmetic average estimator of expected H-period returns which is derived 
by using µ̂ to estimate µ :

  
30 Increasing the frequency of sampling requires reducing the return durations in the sample.  Although better estimates of 2σ

can be obtained with such a strategy, the precision of µ depends on the return length and therefore increased sampling 
frequency cannot improve estimates of µ .  
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Then the expected value of )(HA is

TH

THw

eHRE

eEHREHAE

/2
1

/

22

))((

)())(())((

σ

σ

=

=
(A.11)

The term THe /2
1 22σ is the upward bias factor.  Note that when the power term is equal to zero 

it has no effect.  The power term equals zero when 0=σ .  It also approaches zero as the 
number of observations in the sample, T, approaches ∞ .

A bias-adjusted estimator of ))(( HRE , designated )(HU can then be calculated:
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This has the same basic form as Equation A.6, but with the addition of the term in –H/T.  The 
larger is the sample size relative to the return horizon the less is the impact of the adjustment 
factor.
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Appendix B

The Officer Data Set

B.1 Updating the Data
One of the most widely cited studies of the market risk premium in Australia is Officer’s 
(1989) study covering the period 1882 to 1987.  The data set was updated to 1999 and 
summary statistics were published in the Essential Services Commission Victorian (2002b).

Officer’s data includes, year by year for the period 1882 to 1999, 10-year Treasury bond 
yields at the last available date in December and nominal equity returns to the end of 
December.  Officer then calculates excess returns as the difference between the equity return 
to December and the bond yield in the previous December; thus the first observed excess 
return is for 1883.  He then uses averages of these excess returns to generate estimates of the 
market risk premium, and uses their standard deviations to estimate the standard errors of 
those estimates of the market risk premium.

Professor Officer has kindly provided us with the underlying data set, and we have updated it 
to the end of 2004.  Herein we allude to this extended data set when we refer to the “Officer 
data”.  Our update proceeded in the following way:

• Bond yields for 2000 to 2003 were incorporated from the Reserve Bank of Australia 
(2004) Table F2 using the end of December observations for 1999 to 2003.

• Officer’s equity return series, which is an accumulation index, is a patched series 
drawing on different data sets in different periods (see Officer 1989 p. 211).  The 
variant supplied to us uses the All Ordinaries Accumulation Index for 1982 to 1999.  
Therefore we updated the series by taking values of the end-December All 
Ordinaries Accumulation (gross) Index from Standard and Poors (2005).  This 
introduced a revised 1999 index value and consequently a revision to the 1999 equity 
return (to 16.1 per cent from 19.3 per cent).  Data were also incorporated for 2000 to 
2004.

As would be expected our modifications had a minimal impact on descriptive statistics for the 
whole data set;  we added 4 extra observations to increase its size to 122 observations and 
revised one of the existing observations.  While these additions might not seem particularly 
valuable if one takes an equal-weighted view of the data set, they are potentially more 
important if one decides to accord more weight to recent observations.

B.2 Basic Descriptive Statistics for the Officer Data
The arithmetic average excess return over the period was 7.3 per cent.

As can be seen in Figure 2.1, there is quite considerable variation from year to year in the 
excess return.  The standard deviation is 17.0, the minimum value is -32.0 and the maximum 
is 53.8.  The standard error of the mean was 1.5 per cent and the simple 95-percent confidence 
interval for the excess return was from 4.2 to 10.3 per cent (Table B.1).
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The geometric average excess return over the period was 5.9 per cent, which is appreciably 
smaller than the arithmetic average.31

Table B.1 also shows the average excess return and its simple confidence interval for four 
(rather arbitrary) sub-periods.  At face value the averages suggest a reduction in the market 
risk premium, but the confidence intervals are large (especially in later periods).  Moreover, 
these findings are sensitive to the choice of endpoints.  The arithmetic average for the period 
1974 to 2004 was 6.4 per cent, compared with 7.8 per cent for the period 1943 to 1973, but its 
95-percent confidence interval was from –4.1 to 13.6 per cent.

The fact that confidence intervals become progressively wider through later sub-periods 
reflects increases in the standard deviation of excess returns.  This is also suggested by visual 
inspection of Figure 2.1:  the series appears to be more variable after (say) World War Two.

Table B.1 also shows geometric average returns.  These geometric averages are each lower 
than their corresponding arithmetic averages.  However, it is notable that the differences get 
larger over time.  For instance, for the period 1883 to 1912 the geometric average was 7.8 per 
cent, just 0.3 percentage points less than the arithmetic average.  But over the period 1974 to 
2004 the geometric average of 3.9 per cent was a large 2.5 percentage points lower than the 
arithmetic average of 6.4 per cent.  The reason for the growing divergence was an increase in 
the variance (i.e. the volatility) of returns.  For 1883 to 1912 the multiplicative standard 
deviation was just 1.4 per cent, whereas for 1974 to 2004 it had risen to 4.1 per cent.

Table B.1
Summary Statistics for Excess Returns Over Different Time Periods

Period Average Standard error 95% lower conf. int.  
bound

95% upper conf. int.  
bound

Arithmetic averages: 
1883 to 2004 7.3 1.5 4.2 10.3

1883 to 1912 8.1 1.5 5.1 11.1
1913 to 1942 6.8 2.4 1.8 11.8
1943 to 1973 7.8 3.5 0.7 15.0
1974 to 2004 6.4 4.2 -2.2 15.0

Geometric averages:*
1883 to 2004 5.9 1.5 2.8 9.1

1883 to 1912 7.8 1.4 4.8 10.9
1913 to 1942 5.9 2.5 0.7 11.3
1943 to 1973 6.0 3.5 -1.2 13.8
1974 to 2004 3.9 4.1 -4.4 12.9

Note: * Geometric standard errors have been applied multiplicatively because they are calculated as additive quantities on logs.

The increasing divergence between geometric and arithmetic averages is entirely consistent 
with the increase in the variance of returns over time.  For a given geometric average, higher 
variance in the dataset implies a higher arithmetic average.

  
31 If returns are lognormally distributed, the arithmetic average exceeds the geometric average by half the variance of returns (see 

Campbell 2001 p.3).  Half the variance of returns for the Officer series is 1.4 per cent, which reasonably closely matches the 
observed difference of 1.2 per cent.
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Figure B.1 shows a histogram of excess returns.  It also includes a superimposed normal 
curve (a mean and a variance are sufficient to identify the normal curve and the sample values 
are used for this purpose).  Visual inspection suggests that the histogram has the bell shaped 
character of the normal distribution, but that it is “fat” in the tails and middle of the 
distribution (and correspondingly “thin” between the middle and the tails).32

However, a Jarque-Bera test does not reject the assumption of normality.  The J-B statistic is 
0.91, and there is a 64 per cent probability of obtaining this under the null hypothesis.  

Normality in the arithmetic excess returns is a surprising phenomenon and difficult to accept.  
If we have normality of 1-period returns, then the distribution of n-period returns will be 
given by a product of n normal distributions, and the product of normal distributions is not 
itself a normal distribution.  Normality of 1-period returns would then suggest non-normality 
of returns over shorter and longer durations.  Moreover, normality would strictly require that 
returns of unlimited negative size are possible, whereas there are in fact limits − a negative 
excess return cannot exceed 100 plus the bond rate.

In contrast, lognormal returns do not suffer these defects.  They can prevail across all return 
durations.  That is, lognormality of 1-period returns is quite consistent with lognormal returns 
over n periods, where n may be greater than or less than one.  For instance, lognormality of 1-
year returns is consistent with lognormality of 5 year returns and of 1 month returns.  And log 
returns approach minus infinity as the return approaches zero.

However, when confronted with the actual data − see Figure B.2 − the hypothesis that annual 
excess returns are lognormally distributed (i.e. that the log of 1 plus the excess return is 
normally distributed) is resoundingly rejected.  The Jarque-Bera statistic is 11.6, and there is 
only a 0.3 per cent chance of achieving this.  The hypothesis of lognormality is thus easily 
rejected at a 5-per cent and even a 1-per cent significance level.  How much the deviations 
from lognormality matter is another question.  Where it is necessary to construct multi-period 
returns from 1-period returns, and to carry out statistical inference on these, the assumption of 
lognormality is conceptually much better founded than an assumption of normality (see 
Appendix A).

  
32 The implication is that extreme values have occurred rather more often than would occur if excess returns truly were normally 

distributed.  In fact such a result is not surprising:  it is commonly observed and could be explained, for instance, by changes in 
the variance.  One possible cause of fat tails is drawing from a mixture of conditionally normal distributions with constant 
means but differing variances.  See Campbell, Lo and MacKinlay (1997) pp. 13-20.
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Figure B.1
Histogram of Excess Returns
Annual Data for 1883 to 2004
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Figure B.2
Histogram of Log Excess Returns

Annual Data for 1883 to 2004
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Appendix C

Deriving an optimal estimator from two independent estimators

Let X and Y be two estimators of a population mean µ .  An weighted estimator Z can be 
formed as follows

YaaXZ )1( −+=

By virtue of the fact that the weights sum to 1
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So the estimator Z is unbiased.

If X and Y are independent of each other and 2
Xσ and 2

Yσ are their respective variances, then 
the variance of Z is
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And to confirm that it is a minimum, consider the second derivative

22
2

22
22d

YX
Z

da
σσ

σ
+=

This second derivative must be positive, which implies that 2
Zσ reaches a minimum when the 

first order condition is met.

To conclude, the most efficient estimator (i.e. the minimum variance estimator) given two 
independent estimators X and Y is given by
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and its variance is
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