# Tasmanian Frequency Standards Review

### Hydro Tasmania Perspective June 2008

### **Assessment of Options**



- Status quo (current standard)
  - Gunns, Tamar Valley Power (TVP) unable to connect

### • TVP proposed standard

- Imposes very onerous design and operational requirements for Tasmania
- Basslink import severely constrained
- Net decrease in supply with Bell Bay closure
- Basslink stranded in export
- Major investment required in new fast raise services (up to \$100 million)
- Limited development of new wind in Tasmania

### **Assessment Conclusions**



- Neither standard alone provides increased supplies for Tasmania
- TVP proposal decreases competition from Victoria by constraining Basslink
- TVP proposal results in tighter standard plus increase in contingency size which causes significant increase in FCAS requirement and cost

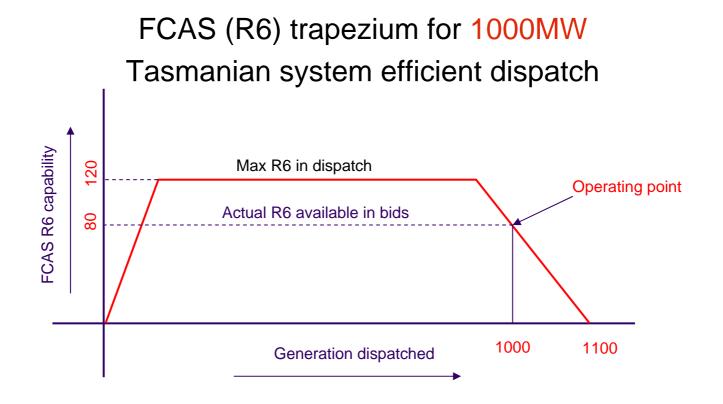
Reliability Panel must take a broader view to find a package of measures which work and provide long term investment certainty

# **Key Issues**

- Tighter standard
  - Increases FCAS requirements
  - Impacts Basslink capability
  - Increases system security risk (UFLS,OFGS,SPS)
  - Add significant redesign cost (UFLS,OFGS,SPS)
- Contingency Size
  - Not covered by NER
  - Larger contingency exacerbates FCAS raise supply issues
  - No dispatch co-optimisation
  - Creates Basslink dispatch issues

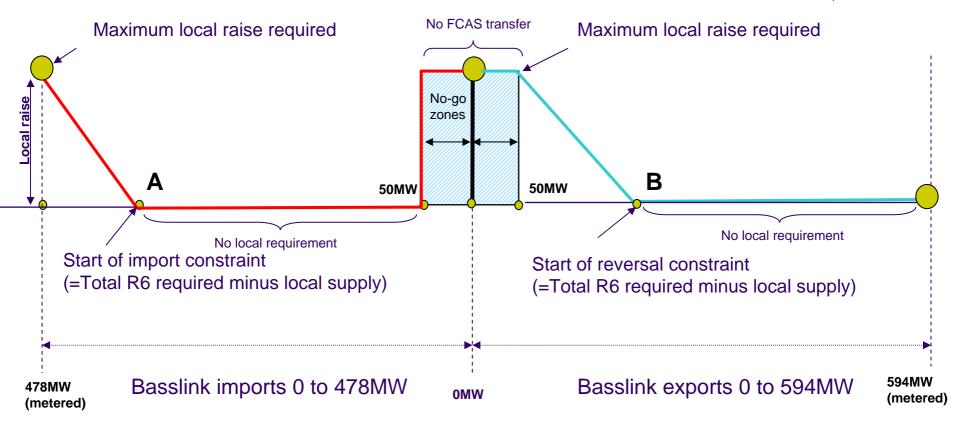





### FCAS R6 Requirement

| Tasmanian system |         |      |      |      |      |  |
|------------------|---------|------|------|------|------|--|
| Demand (MW)      |         | 900  | 1000 | 1400 | 1800 |  |
| Inertia (MWs)    |         | 4500 | 4600 | 7300 | 9700 |  |
| 144 MW           | 47.5 Hz | 95   | 90   | 67   | 47   |  |
| Contingency      | 48.0 Hz | 126  | 117  | 82   | 65   |  |
| 210 MW           | 47.5 Hz | 225  | 211  | 132  | 109  |  |
| Contingency      | 48.0 Hz | 307  | 291  | 160  | 129  |  |

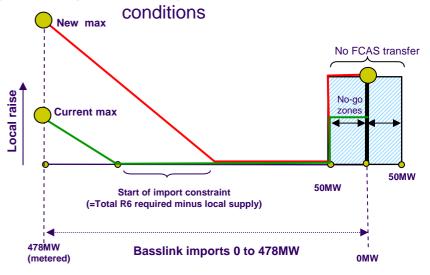
Source: NEMMCO advice to RP 2008

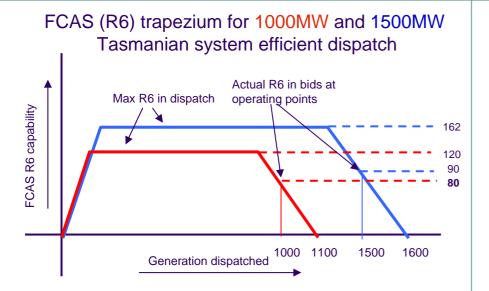

### FCAS R6 Supply



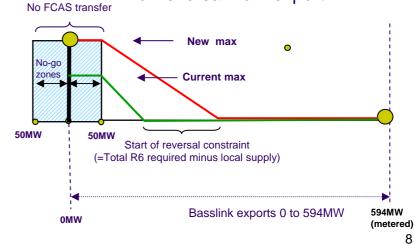





### **FCAS Transport on Basslink**




#### FCAS (R6) Table


| Tasmanian Demand   | 1000 | 1400 |
|--------------------|------|------|
| Tasmanian Inertia  | 4600 | 7300 |
| 47.5Hz, 144MW loss | 90   | 67   |
| 48.0Hz, 144MW loss | 117  | 82   |
| 47.5Hz, 210MW loss | 211  | 132  |
| 48.0Hz, 210MW loss | 291  | 160  |

#### Tasmanian FCAS (Raise) requirements for generating unit contingency under import





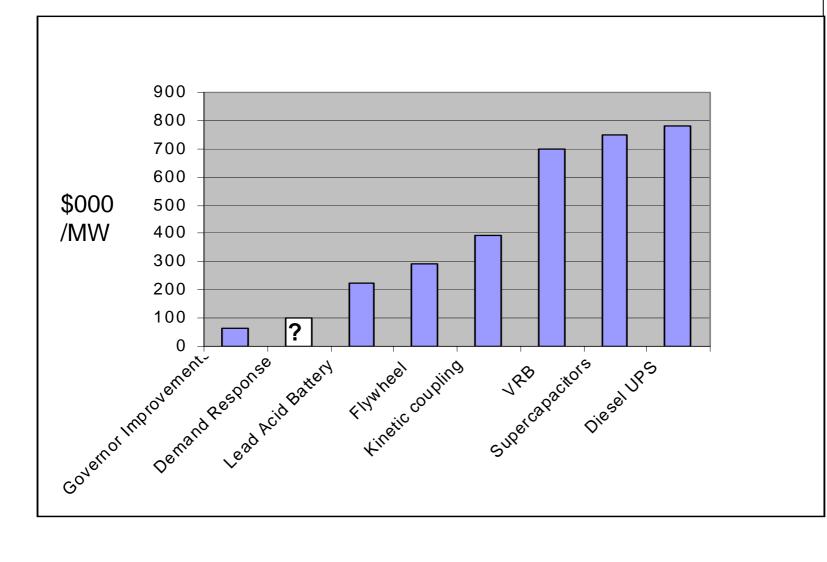
### Tasmanian FCAS (Raise) requirements for reversal from export



### What does all this mean?

• Basslink imports reduced by up to 200MW

• Basslink stranded in export


• Net energy supply for Tasmania may decrease

### **FCAS** Raise Market in Tasmania

- Small revenue stream for suppliers
- Relatively high cost of supply
- Generators provide and pay for service
- Costs can only be recovered around 10% of the time when Basslink can't transport cheap mainland FCAS R6

### No market incentive for investment

### FCAS R6 Possible Supply Options



### **New Zealand Experience**



- \$2bn energy & \$50-100m FCAS markets
- Costs and additional penalties (non-compliance) are attributed to the users of FCAS
- FCAS is provided by generators and interruptible loads (around 50/50 split)
- Co-optimisation of largest unit occurs as a market outcome
- UFLS is used for multiple contingency events; purchased similar to FCAS
- NZ has different features and hence different standards on each island

## Summary



#### Issues

- Tighter standard and larger contingency will cause severe R6 supply problems and operational problems
- Increased reliability risk
- Increased security risk
- Wind development in Tasmania will be constrained

#### • Hydro Tasmania Proposal

- Maintain current frequency standard
- Limit the contingency size to 144MW
- Innovative solution to allow Gunns and Tamar Valley Power to connect